Esempio n. 1
0
def compute_flow_opencv(alpha, iterations, ifile1, ifile2):
  import cv
  i1 = cv.LoadImageM(os.path.join("flow", ifile1), iscolor=False)
  i2 = cv.LoadImageM(os.path.join("flow", ifile2), iscolor=False)
  u = cv.CreateMat(i1.rows, i1.cols, cv.CV_32F)
  cv.SetZero(u)
  v = cv.CreateMat(i1.rows, i1.cols, cv.CV_32F)
  cv.SetZero(v)
  l = 1.0/(alpha**2)
  cv.CalcOpticalFlowHS(i1, i2, 0, u, v, l, (cv.CV_TERMCRIT_ITER, iterations, 0))
  # return blitz arrays
  return numpy.array(u, 'float64'), numpy.array(v, 'float64')
Esempio n. 2
0
    def horn_schunck(self):
        vid = cv.CaptureFromFile(self.path)

        term_crit = (cv.CV_TERMCRIT_ITER, 100, 0)

        first_frame = cv_compat.get_gray_frame(vid)
        velx = cv.CreateImage(cv.GetSize(first_frame), cv.IPL_DEPTH_32F, 1)
        vely = cv.CreateImage(cv.GetSize(first_frame), cv.IPL_DEPTH_32F, 1)

        for prev_frame, curr_frame, curr_frame_color in self._iter_frames(vid):
            cv.CalcOpticalFlowHS(prev_frame, curr_frame, False, velx, vely,
                                 0.001, term_crit)
            flow = np.dstack(
                (np.asarray(cv.GetMat(velx)), np.asarray(cv.GetMat(vely))))
            yield Flow(flow, curr_frame, prev_frame, curr_frame_color)
##using horn schunk
if args.algorithm == 'HS':
    dst_im1 = cv.LoadImage(args.im2, cv.CV_LOAD_IMAGE_COLOR)
    dst_im2 = dst_im1

    #size is tuple type
    cols = src_im1.width
    rows = src_im1.height

    velx = cv.CreateMat(rows, cols, cv.CV_32FC1)
    vely = cv.CreateMat(rows, cols, cv.CV_32FC1)

    cv.SetZero(velx)
    cv.SetZero(vely)

    cv.CalcOpticalFlowHS(src_im1, src_im2, 0, velx, vely, 100.0,
                         (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 64, 0.01))
    #cv.CalcOpticalFlowLK(src_im1, src_im2, (10,10), velx, vely)
    print velx
    print vely

    for i in range(0, (cols - 1), 5):
        for j in range(0, (rows - 1), 5):
            dx = cv.GetReal2D(velx, j, i)
            dy = cv.GetReal2D(vely, j, i)
            cv.Line(dst_im1, (i, j), (int(i + dx), int(j + dy)),
                    cv.CV_RGB(255, 0, 0), 1, cv.CV_AA, 0)

    cv.NamedWindow("w", cv.CV_WINDOW_AUTOSIZE)
    cv.ShowImage("w", dst_im1)
    cv.WaitKey()
Esempio n. 4
0
# desImageHS = cv.LoadImage(sys.argv[1], cv.CV_LOAD_IMAGE_COLOR)
# desImageLK = cv.LoadImage(sys.argv[1], cv.CV_LOAD_IMAGE_COLOR)

desImageHS = cv.LoadImage('./A/8.0/shuibo_9.jpg', cv.CV_LOAD_IMAGE_COLOR)
desImageLK = cv.LoadImage('./A/8.0/shuibo_9.jpg', cv.CV_LOAD_IMAGE_COLOR)

cols = inputImageFirst.width
rows = inputImageFirst.height

velx = cv.CreateMat(rows, cols, cv.CV_32FC1)
vely = cv.CreateMat(rows, cols, cv.CV_32FC1)
cv.SetZero(velx)
cv.SetZero(vely)

cv.CalcOpticalFlowHS(inputImageFirst, inputImageSecond, False, velx, vely,
                     100.0,
                     (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 64, 0.01))
f = open('./A/8.0/shuibo_8_HS(x1,y1,x1,y2).txt', 'w')
count = 0
for i in range(0, cols, FLOWSKIP):
    for j in range(0, rows, FLOWSKIP):
        dx = int(cv.GetReal2D(velx, j, i))
        dy = int(cv.GetReal2D(vely, j, i))
        cv.Line(desImageHS, (i, j), (i + dx, j + dy), (0, 0, 255), 1, cv.CV_AA,
                0)
        f.writelines(
            [str(i), ' ',
             str(j), ' ',
             str(i + dx), ' ',
             str(j + dy), '\n'])
        # count+=1
Esempio n. 5
0
def main():
    if len(sys.argv) == 1:
        print 'Usage: %s [inputfile]' % sys.argv[0]
        sys.exit(1)

    # initialize window
    cv.NamedWindow('video', cv.CV_WINDOW_AUTOSIZE)
    cv.MoveWindow('video', 10, 10)

    cv.NamedWindow('threshold', cv.CV_WINDOW_AUTOSIZE)
    cv.MoveWindow('threshold', 10, 500)

    cv.NamedWindow('flow', cv.CV_WINDOW_AUTOSIZE)
    cv.MoveWindow('flow', 500, 10)

    cv.NamedWindow('edges', cv.CV_WINDOW_AUTOSIZE)
    cv.MoveWindow('edges', 500, 500)

    cv.NamedWindow('combined', cv.CV_WINDOW_AUTOSIZE)
    cv.MoveWindow('combined', 1000, 10)

    capture = cv.CreateFileCapture(sys.argv[1])
    if not capture:
        print 'Error opening capture'
        sys.exit(1)

    # Load bg image
    bg = cv.LoadImage('bg.png')

    # Discard some frames
    for i in xrange(2300):
        cv.GrabFrame(capture)

    frame = cv.QueryFrame(capture)
    frame_size = cv.GetSize(frame)

    # vars for playback
    fps = 25
    play = True
    velx = cv.CreateImage(frame_size, cv.IPL_DEPTH_32F, 1)
    vely = cv.CreateImage(frame_size, cv.IPL_DEPTH_32F, 1)
    combined = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    prev = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    curr = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    frame_sub = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 3)

    edges = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    prev_edges = None
    storage = cv.CreateMemStorage(0)

    blob_mask = cv0.cvCreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    cv0.cvSet(blob_mask, 1)

    hough_in = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    hough_storage = cv.CreateMat(100, 1, cv.CV_32FC3)
    '''
    cv.CvtColor(frame, prev, cv.CV_BGR2GRAY)
    frame = cv.QueryFrame(capture)
    cv.CvtColor(frame, curr, cv.CV_BGR2GRAY)

    # winSize can't have even numbers
    cv.CalcOpticalFlowLK(prev, curr, (3,3), velx, vely)
    cv.ShowImage('video', frame)
    cv.ShowImage('flow', velx)
    cv.WaitKey(0)
    '''

    while True:

        if play:
            frame = cv.QueryFrame(capture)
            cv.Sub(frame, bg, frame_sub)
            '''#detect people
            found = list(cv.HOGDetectMultiScale(frame, storage, win_stride=(8,8),
                padding=(32,32), scale=1.05, group_threshold=2))
            for r in found:
                (rx, ry), (rw, rh) = r
                tl = (rx + int(rw*0.1), ry + int(rh*0.07))
                br = (rx + int(rw*0.9), ry + int(rh*0.87))
                cv.Rectangle(frame, tl, br, (0, 255, 0), 3)
            '''

            #color thresholding
            hsv = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 3)
            cv.CvtColor(frame, hsv, cv.CV_BGR2HSV)
            mask = cv.CreateMat(frame_size[1], frame_size[0], cv.CV_8UC1)
            cv.InRangeS(hsv, (0.06 * 256, 0.2 * 256, 0.6 * 256, 0),
                        (0.16 * 256, 1.0 * 256, 1.0 * 256, 0), mask)
            cv.ShowImage('threshold', mask)

            #optical flow method
            # store previous frame
            prev, curr = curr, prev
            # convert next frame to single channel grayscale
            cv.CvtColor(frame_sub, curr, cv.CV_BGR2GRAY)
            #cv.CalcOpticalFlowLK(prev, curr, (3,3), velx, vely)
            #cv.Threshold(velx, velx, 8.0, 0, cv.CV_THRESH_TOZERO)
            cv.CalcOpticalFlowHS(prev, curr, 1, velx, vely, 0.5,
                                 (cv.CV_TERMCRIT_ITER, 10, 0))
            cv.Threshold(velx, velx, 0.5, 0, cv.CV_THRESH_TOZERO)
            cv.Threshold(vely, vely, 0.5, 0, cv.CV_THRESH_TOZERO)
            cv.Erode(
                vely, vely,
                cv.CreateStructuringElementEx(2, 2, 0, 0, cv.CV_SHAPE_ELLIPSE))
            cv.Add(vely, velx, vely)
            cv.ShowImage('flow', vely)

            #edge detection
            cv.Canny(curr, edges, 50, 100)
            cv.Dilate(
                edges, edges,
                cv.CreateStructuringElementEx(7, 7, 0, 0, cv.CV_SHAPE_ELLIPSE))
            cv.ShowImage('edges', edges)

            if prev_edges:
                cv.CalcOpticalFlowHS(prev_edges, edges, 1, velx, vely, 0.5,
                                     (cv.CV_TERMCRIT_ITER, 10, 0))
                cv.Threshold(velx, velx, 0.5, 0, cv.CV_THRESH_TOZERO)
                cv.Threshold(vely, vely, 0.5, 0, cv.CV_THRESH_TOZERO)
                cv.ShowImage('flow', vely)
            prev_edges = edges

            cv.Threshold(vely, combined, 0.5, 255, cv.CV_THRESH_BINARY)
            cv.Min(combined, edges, combined)
            cv.ShowImage('combined', combined)

            # blobs
            myblobs = CBlobResult(edges, blob_mask, 100, False)
            myblobs.filter_blobs(10, 10000)
            blob_count = myblobs.GetNumBlobs()

            for i in range(blob_count):

                my_enumerated_blob = myblobs.GetBlob(i)
                #               print "%d: Area = %d" % (i, my_enumerated_blob.Area())
                my_enumerated_blob.FillBlob(frame,
                                            hsv2rgb(i * 180.0 / blob_count), 0,
                                            0)

            cv.ShowImage('video', frame)
            ''' crashes
            #hough transform on dilated image
            #http://wiki.elphel.com/index.php?
            # title=OpenCV_Tennis_balls_recognizing_tutorial&redirect=no
            cv.Copy(edges, hough_in)
            cv.Smooth(hough_in, hough_in, cv.CV_GAUSSIAN, 15, 15, 0, 0)
            cv.HoughCircles(hough_in, hough_storage, cv.CV_HOUGH_GRADIENT,
                            4, frame_size[1]/10, 100, 40, 0, 0)
            print hough_storage
            '''

        k = cv.WaitKey(1000 / fps)
        if k == 27:  # ESC key
            break
        elif k == 'p':  # play/pause
            play = not play
Esempio n. 6
0
    def calcOpticalFlow(self, curImageGray, method="BlockMatching"):

        if curImageGray.channels != 1:
            raise Exception("Only able to process gray-scale images")

        if self.lastImageGray == None:
            lastImageGray = curImageGray
        else:
            lastImageGray = self.lastImageGray

        # Create storage for the optical flow
        storageWidth = self.calcOpticalFlowWidth(lastImageGray.width)
        storageHeight = self.calcOpticalFlowHeight(lastImageGray.height)

        if method == "BlockMatching":
            opticalFlowArrayX = np.ndarray(shape=(storageHeight, storageWidth),
                                           dtype=np.float32)
            opticalFlowArrayY = np.ndarray(shape=(storageHeight, storageWidth),
                                           dtype=np.float32)

            cv.CalcOpticalFlowBM(
                lastImageGray, curImageGray,
                (self.opticalFlowBlockWidth, self.opticalFlowBlockHeight),
                (self.opticalFlowBlockWidth, self.opticalFlowBlockHeight),
                (self.opticalFlowRangeWidth, self.opticalFlowRangeHeight), 0,
                cv.fromarray(opticalFlowArrayX),
                cv.fromarray(opticalFlowArrayY))

        elif method == "LucasKanade":

            largeOpticalFlowArrayX = np.ndarray(shape=(lastImageGray.height,
                                                       lastImageGray.width),
                                                dtype=np.float32)
            largeOpticalFlowArrayY = np.ndarray(shape=(lastImageGray.height,
                                                       lastImageGray.width),
                                                dtype=np.float32)

            cv.CalcOpticalFlowLK(
                lastImageGray,
                curImageGray,
                (
                    15, 15
                ),  #( self.opticalFlowBlockWidth, self.opticalFlowBlockHeight ),
                cv.fromarray(largeOpticalFlowArrayX),
                cv.fromarray(largeOpticalFlowArrayY))

            indexGrid = np.mgrid[0:storageHeight, 0:storageWidth]
            indexGrid[0] = indexGrid[
                0] * self.opticalFlowBlockHeight + self.opticalFlowBlockHeight / 2
            indexGrid[1] = indexGrid[
                1] * self.opticalFlowRangeWidth + self.opticalFlowRangeWidth / 2
            opticalFlowArrayX = largeOpticalFlowArrayX[indexGrid[0],
                                                       indexGrid[1]]
            opticalFlowArrayY = largeOpticalFlowArrayY[indexGrid[0],
                                                       indexGrid[1]]
        elif method == "HornSchunck":

            largeOpticalFlowArrayX = np.ndarray(shape=(lastImageGray.height,
                                                       lastImageGray.width),
                                                dtype=np.float32)
            largeOpticalFlowArrayY = np.ndarray(shape=(lastImageGray.height,
                                                       lastImageGray.width),
                                                dtype=np.float32)

            cv.CalcOpticalFlowHS(
                lastImageGray, curImageGray, 0,
                cv.fromarray(largeOpticalFlowArrayX),
                cv.fromarray(largeOpticalFlowArrayY), 1.0,
                (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 10, 0.01))

            indexGrid = np.mgrid[0:storageHeight, 0:storageWidth]
            indexGrid[0] = indexGrid[
                0] * self.opticalFlowBlockHeight + self.opticalFlowBlockHeight / 2
            indexGrid[1] = indexGrid[
                1] * self.opticalFlowRangeWidth + self.opticalFlowRangeWidth / 2
            opticalFlowArrayX = largeOpticalFlowArrayX[indexGrid[0],
                                                       indexGrid[1]]
            opticalFlowArrayY = largeOpticalFlowArrayY[indexGrid[0],
                                                       indexGrid[1]]

        else:
            raise Exception("Unhandled method")

        # Save the current image
        self.lastImageGray = curImageGray

        return (opticalFlowArrayX, opticalFlowArrayY)