Esempio n. 1
0
    def renderIndividualHist(self, painting):
        height = 500
        width = 500
        (r, g, b) = cv.GetDims(painting.data.bins)

        (_, tallest, _, _) = cv.GetMinMaxHistValue(painting.data)
        scale = height / tallest
        if scale > 1:
            scale = 1

        histImage = cv.CreateImage((width, height), 8, 3)
        prev = -1

        cv.Rectangle(histImage, (0, 0), (width, height), cv.CV_RGB(0, 0, 0),
                     cv.CV_FILLED)

        step = width / (r * g * b)
        cur = 0
        for (i, j, k) in iter3D(range(r), range(g), range(b)):
            intensity = cv.QueryHistValue_3D(painting.data, i, j, k)
            color = cv.CV_RGB(int((255 / r) * i), int((255 / g) * j),
                              int((255 / b) * k))
            x1 = cur
            cur += step
            x2 = x1 + step
            cv.Rectangle(histImage, (int(x1), height),
                         (int(x2), height - int(intensity * scale)), color,
                         cv.CV_FILLED)

        windowTitle = '{0} ({1})'.format(painting.title, painting.year)
        cv.NamedWindow(windowTitle)
        cv.ShowImage(windowTitle, histImage)
        cv.WaitKey(0)
Esempio n. 2
0
def hue_histogram_as_image(hist):
    histimg_hsv = cv.CreateImage((640, 480), 8, 3)

    mybins = cv.CloneMatND(hist.bins)
    cv.Log(mybins, mybins)
    (_, hi, _, _) = cv.MinMaxLoc(mybins)
    cv.ConvertScale(mybins, mybins, 255. / hi)

    w, h = cv.GetSize(histimg_hsv)
    hdims = int(cv.GetDims(mybins)[0])
    for x in range(w):
        xh = (180 * x) / (w - 1)  # hue sweeps from 0-180 across the image
        val = int(mybins[int(hdims * x / w)] * h / 255)
        cv.Rectangle(histimg_hsv, (x, 0), (x, h - val), (xh, 255, 64), -1)
        cv.Rectangle(histimg_hsv, (x, h - val), (x, h), (xh, 255, 255), -1)

    histimg = cv.CreateImage((320, 200), 8, 3)
    cv.CvtColor(histimg_hsv, histimg, cv.CV_HSV2BGR)
    return histimg
def setup_camshift(roi_selection, img):

    hist = cv.CreateHist([180], cv.CV_HIST_ARRAY, [(0, 180)], 1)
    # backproject_mode = False

    histimg_hsv = cv.CreateImage((320, 200), 8, 3)
    mybins = cv.CloneMatND(hist.bins)
    cv.Log(mybins, mybins)

    (_, hi, _, _) = cv.MinMaxLoc(mybins)
    cv.ConvertScale(mybins, mybins, 255. / hi)

    w, h = cv.GetSize(histimg_hsv)
    hdims = cv.GetDims(mybins)[0]
    for x in range(w):
        xh = (180 * x) / (w - 1)  # hue sweeps from 0-180 across the image
        val = int(mybins[int(hdims * x / w)] * h / 255)
        cv.Rectangle(histimg_hsv, (x, 0), (x, h - val), (xh, 255, 64), -1)
        cv.Rectangle(histimg_hsv, (x, h - val), (x, h), (xh, 255, 255), -1)

    histimg = cv.CreateImage((320, 200), 8, 3)
    cv.CvtColor(histimg_hsv, histimg, cv.CV_HSV2BGR)

    # making_selection
    # print roi_selection[0]
    # print roi_selection[1]
    point1 = roi_selection[0]
    point2 = roi_selection[1]
    xmin = point1[0]
    ymin = point1[1]
    xmax = point2[0]
    ymax = point2[1]
    widthx = xmax - xmin
    heighty = ymax - ymin

    selection = (xmin, ymin, widthx, heighty)
    return selection, hist
Esempio n. 4
0
def calc_1dhisto(inframe,
                 nbin=256,
                 scale=2,
                 histh=200,
                 hist=None,
                 histimg=None):
    """
	Calculate 1D intensity histogram of a iplimage, and return the histogram 
	(as cv2.cv.cvhistogram) and an image representing this histogram (as 
	8bit unsigned iplimage) Use **hist** and **histimg** if they are 
	provided, otherwise create them from scratch.

	To re-use the allocated memory, simply pass the output as input for 
	input **hist** and **histimg**.

	Histogram bar height is calculated as follows:
		
		bin_height = int( bin_count*1.0 / (npix/nbin) * 0.2 * histh )

	where bin_height is in pixels, bin_count is the number of pixels in this 
	bin, npix the total number of pixels in the image, nbin the total bins, 
	such that (npix/nbin) is the average bin count. 0.2 is a factor that 
	sets the average bin height to 20% and histh scales the bin normalized 
	bin height to pixels.

	@param [in] inframe Input frame, as iplimage
	@param [in] nbin Number of intensity bins
	@param [in] scale Histogram image bar width in pixels
	@param [in] histh Histogram image height in pixels
	@param [in] hist Previously allocated cv2.cv.cvhistogram to use
	@param [in] histimg Previously allocated iplimage to use
	@return Tuple of (histogram, histogram image)
	"""

    if (inframe.depth == cv.IPL_DEPTH_32F):
        hranges = [[0, 1]]
    elif (inframe.depth in [
            cv.IPL_DEPTH_8U, cv.IPL_DEPTH_8S, cv.IPL_DEPTH_16U,
            cv.IPL_DEPTH_16S, cv.IPL_DEPTH_32S
    ]):
        hranges = None
    else:
        raise ValueError("Unsupported datatype for histogram ('%s')" %
                         (str(inframe.depth)))

    if (not hist):
        hist = cv.CreateHist([nbin],
                             cv.CV_HIST_ARRAY,
                             ranges=[[0, 1]],
                             uniform=1)
    if (not histimg):
        histimg = cv.CreateImage((nbin * scale, histh), cv.IPL_DEPTH_8U, 1)

    cv.CalcHist([cv.GetImage(inframe)], hist)
    #hmin, hmax, __, __ = cv.GetMinMaxHistValue(hist)

    # White noise histogram height should be be 0.2
    npix = np.product(cv.GetDims(inframe))
    histogram = [
        cv.QueryHistValue_1D(hist, i) * 1.0 / (npix / nbin) * 0.2 * histh
        for i in range(nbin)
    ]
    histimg = plot_1dhisto(histogram,
                           scale=scale,
                           histh=histh,
                           histimg=histimg)

    return hist, histimg
Esempio n. 5
0
CAM_CFG = {
    'camidx': 0,
    'frameidx': 0,
    'handler': None,
    'buf': [None] * 10,
    'roi': roi
}

# Initialize camera handler
CAM_CFG['handler'] = cv.CaptureFromCAM(CAM_CFG['camidx'])
rawframe = cv.QueryFrame(CAM_CFG['handler'])
frame = cv.GetSubRect(rawframe, roi)

# Make fake calibration frames from data
darkarr = (np.random.random(cv.GetDims(frame)) * 10.0 / 256).astype(np.float32)
darkframe = array2cv(darkarr)

lastframe = cv.CloneImage(darkframe)
camframe = cv.CloneImage(darkframe)
diffframe = cv.CloneImage(darkframe)

# Make real flat field
print "Taking 100 flats..."
frame = cv.GetSubRect(cv.QueryFrame(CAM_CFG['handler']), CAM_CFG['roi'])
cv.ConvertScale(frame, camframe, scale=1.0 / 256)
flatframe = cv.CloneImage(camframe)

for i in xrange(9):
    print ".",
    frame = cv.GetSubRect(cv.QueryFrame(CAM_CFG['handler']), CAM_CFG['roi'])