localMax = cv.CreateMat(dst_32f.height, dst_32f.width, cv.CV_8U) cv.Cmp( dst_32f, dilated, localMax, cv.CV_CMP_EQ ) #compare allow to keep only non modified pixel which are local maximum values which are corners. threshold = 0.01 * maxv cv.Threshold(dst_32f, dst_32f, threshold, 255, cv.CV_THRESH_BINARY) cornerMap = cv.CreateMat(dst_32f.height, dst_32f.width, cv.CV_8U) cv.Convert(dst_32f, cornerMap) #Convert to make the and cv.And(cornerMap, localMax, cornerMap) #Delete all modified pixels radius = 3 thickness = 2 l = [] for x in range( cornerMap.height ): #Create the list of point take all pixel that are not 0 (so not black) for y in range(cornerMap.width): if cornerMap[x, y]: l.append((y, x)) for center in l: cv.Circle(im, center, radius, (255, 255, 255), thickness) cv.ShowImage("Image", im) cv.ShowImage("CornerHarris Result", dst_32f) cv.ShowImage("Unique Points after Dilatation/CMP/And", cornerMap) cv.WaitKey(0)
def draw_subdiv_point(img, fp, color): cv.Circle(img, (cv.Round(fp[0]), cv.Round(fp[1])), 3, color, cv.CV_FILLED, 8, 0)
def draw(self, img, pixmapper, bounds): '''draw the trail''' for p in self.points: (px, py) = pixmapper(p) if px >= 0 and py >= 0 and px < img.width and py < img.height: cv.Circle(img, (px, py), 1, self.colour)
def run(self): # Initialize log_file_name = "tracker_output.log" log_file = open( log_file_name, 'a' ) #fps = 25 #cap = cv2.VideoCapture( '../000104-.avi' frame = cv.QueryFrame( self.capture ) frame_size = cv.GetSize( frame ) foreground = cv.CreateImage(cv.GetSize(frame),8,1) foremat = cv.GetMat(foreground) Nforemat = numpy.array(foremat, dtype=numpy.float32) gfilter=sys.argv[2] gfilter_string=gfilter gfilter=float(gfilter) print "Processing Tracker with filter: " + str(gfilter) # Capture the first frame from webcam for image properties display_image = cv.QueryFrame( self.capture ) # Create Background Subtractor fgbg = cv2.BackgroundSubtractorMOG() # Greyscale image, thresholded to create the motion mask: grey_image = cv.CreateImage( cv.GetSize(frame), cv.IPL_DEPTH_8U, 1 ) # The RunningAvg() function requires a 32-bit or 64-bit image... running_average_image = cv.CreateImage( cv.GetSize(frame), cv.IPL_DEPTH_32F, 3 ) # ...but the AbsDiff() function requires matching image depths: running_average_in_display_color_depth = cv.CloneImage( display_image ) # RAM used by FindContours(): mem_storage = cv.CreateMemStorage(0) # The difference between the running average and the current frame: difference = cv.CloneImage( display_image ) target_count = 1 last_target_count = 1 last_target_change_t = 0.0 k_or_guess = 1 codebook=[] frame_count=0 last_frame_entity_list = [] fps = 25 t0 = 165947 # For toggling display: image_list = [ "camera", "shadow", "white", "threshold", "display", "yellow" ] image_index = 0 # Index into image_list # Prep for text drawing: text_font = cv.InitFont(cv.CV_FONT_HERSHEY_COMPLEX, .5, .5, 0.0, 1, cv.CV_AA ) text_coord = ( 5, 15 ) text_color = cv.CV_RGB(255,255,255) text_coord2 = ( 5, 30 ) text_coord3 = ( 5, 45 ) ############################### ### Face detection stuff #haar_cascade = cv.Load( 'haarcascades/haarcascade_frontalface_default.xml' ) #haar_cascade = cv.Load( 'C:/OpenCV2.2/data/haarcascades/haarcascade_frontalface_alt.xml' ) #haar_cascade = cv.Load( 'haarcascades/haarcascade_frontalface_alt2.xml' ) #haar_cascade = cv.Load( 'haarcascades/haarcascade_mcs_mouth.xml' ) #haar_cascade = cv.Load( 'haarcascades/haarcascade_eye.xml' ) #haar_cascade = cv.Load( 'haarcascades/haarcascade_frontalface_alt_tree.xml' ) #haar_cascade = cv.Load( 'haarcascades/haarcascade_upperbody.xml' ) #haar_cascade = cv.Load( 'haarcascades/haarcascade_profileface.xml' ) # Set this to the max number of targets to look for (passed to k-means): max_targets = 20 while True: # Capture frame from webcam camera_image = cv.QueryFrame( self.capture ) #ret, frame = cap.read() frame_count += 1 frame_t0 = time.time() mat = cv.GetMat(camera_image) Nmat = numpy.array(mat, dtype=numpy.uint8) # Create an image with interactive feedback: display_image = cv.CloneImage( camera_image ) # NEW INSERT - FGMASK fgmask = fgbg.apply(Nmat,Nforemat,-1) fgmask = cv.fromarray(fgmask) # Create a working "color image" to modify / blur color_image = cv.CloneImage( display_image ) # Smooth to get rid of false positives cv.Smooth( color_image, color_image, cv.CV_GAUSSIAN, 19, 0 ) #Changed from 19 AND MADE MEDIAN FILTER # Smooth to get rid of false positives # color_image = numpy.asarray( cv.GetMat( color_image ) ) # (mu, sigma) = cv2.meanStdDev(color_image) # edges = cv2.Canny(color_image, mu - sigma, mu + sigma) # lines = cv2.HoughLines(edges, 1, pi / 180, 70) # Use the Running Average as the static background # a = 0.020 leaves artifacts lingering way too long. # a = 0.320 works well at 320x240, 15fps. (1/a is roughly num frames.) cv.RunningAvg( color_image, running_average_image, gfilter, None ) # Convert the scale of the moving average. cv.ConvertScale( running_average_image, running_average_in_display_color_depth, 1.0, 0.0 ) # Subtract the current frame from the moving average. cv.AbsDiff( color_image, running_average_in_display_color_depth, difference ) # Convert the image to greyscale. cv.CvtColor( difference, grey_image, cv.CV_RGB2GRAY ) # Smooth Before thresholding cv.Smooth( grey_image, grey_image, cv.CV_GAUSSIAN, 19, 19 ) # Threshold the image to a black and white motion mask: cv.Threshold( grey_image, grey_image, 2, 255, cv.CV_THRESH_BINARY ) # Smooth and threshold again to eliminate "sparkles" #cv.Smooth( grey_image, grey_image, cv.CV_GAUSSIAN, 19, 0 ) #changed from 19 - AND put smooth before threshold cv.Threshold( grey_image, grey_image, 240, 255, cv.CV_THRESH_BINARY) grey_image_as_array = numpy.asarray( cv.GetMat( grey_image ) ) non_black_coords_array = numpy.where( grey_image_as_array > 3 ) # Convert from numpy.where()'s two separate lists to one list of (x, y) tuples: non_black_coords_array = zip( non_black_coords_array[1], non_black_coords_array[0] ) frame_hsv = cv.CreateImage(cv.GetSize(color_image),8,3) cv.CvtColor(color_image,frame_hsv,cv.CV_BGR2HSV) imgthreshold_yellow=cv.CreateImage(cv.GetSize(color_image),8,1) imgthreshold_white=cv.CreateImage(cv.GetSize(color_image),8,1) imgthreshold_white2=cv.CreateImage(cv.GetSize(color_image),8,1) cv.InRangeS(frame_hsv,cv.Scalar(0,0,196),cv.Scalar(255,255,255),imgthreshold_white) # changed scalar from 255,15,255 to 255,255,255 cv.InRangeS(frame_hsv,cv.Scalar(41,43,224),cv.Scalar(255,255,255),imgthreshold_white2) cv.InRangeS(frame_hsv,cv.Scalar(20,100,100),cv.Scalar(30,255,255),imgthreshold_yellow) #cvCvtColor(color_image, yellowHSV, CV_BGR2HSV) #lower_yellow = np.array([10, 100, 100], dtype=np.uint8) #upper_yellow = np.array([30, 255, 255], dtype=np.uint8) #mask_yellow = cv2.inRange(yellowHSV, lower_yellow, upper_yellow) #res_yellow = cv2.bitwise_and(color_image, color_image, mask_yellow = mask_yellow) points = [] # Was using this to hold either pixel coords or polygon coords. bounding_box_list = [] # Now calculate movements using the white pixels as "motion" data contour = cv.FindContours( grey_image, mem_storage, cv.CV_RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE ) i=0 while contour: # c = contour[i] # m = cv2.moments(c) # Area = m['m00'] # print( Area ) bounding_rect = cv.BoundingRect( list(contour) ) point1 = ( bounding_rect[0], bounding_rect[1] ) point2 = ( bounding_rect[0] + bounding_rect[2], bounding_rect[1] + bounding_rect[3] ) bounding_box_list.append( ( point1, point2 ) ) polygon_points = cv.ApproxPoly( list(contour), mem_storage, cv.CV_POLY_APPROX_DP ) # To track polygon points only (instead of every pixel): #points += list(polygon_points) # Draw the contours: ###cv.DrawContours(color_image, contour, cv.CV_RGB(255,0,0), cv.CV_RGB(0,255,0), levels, 3, 0, (0,0) ) cv.FillPoly( grey_image, [ list(polygon_points), ], cv.CV_RGB(255,255,255), 0, 0 ) cv.PolyLine( display_image, [ polygon_points, ], 0, cv.CV_RGB(255,255,255), 1, 0, 0 ) #cv.Rectangle( display_image, point1, point2, cv.CV_RGB(120,120,120), 1) # if Area > 3000: # cv2.drawContours(imgrgb,[cnt],0,(255,255,255),2) # print(Area) i=i+1 contour = contour.h_next() # Find the average size of the bbox (targets), then # remove any tiny bboxes (which are prolly just noise). # "Tiny" is defined as any box with 1/10th the area of the average box. # This reduces false positives on tiny "sparkles" noise. box_areas = [] for box in bounding_box_list: box_width = box[right][0] - box[left][0] box_height = box[bottom][0] - box[top][0] box_areas.append( box_width * box_height ) #cv.Rectangle( display_image, box[0], box[1], cv.CV_RGB(255,0,0), 1) average_box_area = 0.0 if len(box_areas): average_box_area = float( sum(box_areas) ) / len(box_areas) trimmed_box_list = [] for box in bounding_box_list: box_width = box[right][0] - box[left][0] box_height = box[bottom][0] - box[top][0] # Only keep the box if it's not a tiny noise box: if (box_width * box_height) > average_box_area*0.1: trimmed_box_list.append( box ) # Draw the trimmed box list: #for box in trimmed_box_list: # cv.Rectangle( display_image, box[0], box[1], cv.CV_RGB(0,255,0), 2 ) bounding_box_list = merge_collided_bboxes( trimmed_box_list ) # Draw the merged box list: for box in bounding_box_list: cv.Rectangle( display_image, box[0], box[1], cv.CV_RGB(0,255,0), 1 ) # Here are our estimate points to track, based on merged & trimmed boxes: estimated_target_count = len( bounding_box_list ) # Don't allow target "jumps" from few to many or many to few. # Only change the number of targets up to one target per n seconds. # This fixes the "exploding number of targets" when something stops moving # and the motion erodes to disparate little puddles all over the place. if frame_t0 - last_target_change_t < .35: # 1 change per 0.35 secs estimated_target_count = last_target_count else: if last_target_count - estimated_target_count > 1: estimated_target_count = last_target_count - 1 if estimated_target_count - last_target_count > 1: estimated_target_count = last_target_count + 1 last_target_change_t = frame_t0 # Clip to the user-supplied maximum: estimated_target_count = min( estimated_target_count, max_targets ) # The estimated_target_count at this point is the maximum number of targets # we want to look for. If kmeans decides that one of our candidate # bboxes is not actually a target, we remove it from the target list below. # Using the numpy values directly (treating all pixels as points): points = non_black_coords_array center_points = [] if len(points): # If we have all the "target_count" targets from last frame, # use the previously known targets (for greater accuracy). k_or_guess = max( estimated_target_count, 1 ) # Need at least one target to look for. if len(codebook) == estimated_target_count: k_or_guess = codebook #points = vq.whiten(array( points )) # Don't do this! Ruins everything. codebook, distortion = vq.kmeans( array( points ), k_or_guess ) # Convert to tuples (and draw it to screen) for center_point in codebook: center_point = ( int(center_point[0]), int(center_point[1]) ) center_points.append( center_point ) #cv.Circle(display_image, center_point, 10, cv.CV_RGB(255, 0, 0), 2) #cv.Circle(display_image, center_point, 5, cv.CV_RGB(255, 0, 0), 3) # Now we have targets that are NOT computed from bboxes -- just # movement weights (according to kmeans). If any two targets are # within the same "bbox count", average them into a single target. # # (Any kmeans targets not within a bbox are also kept.) trimmed_center_points = [] removed_center_points = [] for box in bounding_box_list: # Find the centers within this box: center_points_in_box = [] for center_point in center_points: if center_point[0] < box[right][0] and center_point[0] > box[left][0] and \ center_point[1] < box[bottom][1] and center_point[1] > box[top][1] : # This point is within the box. center_points_in_box.append( center_point ) # Now see if there are more than one. If so, merge them. if len( center_points_in_box ) > 1: # Merge them: x_list = y_list = [] for point in center_points_in_box: x_list.append(point[0]) y_list.append(point[1]) average_x = int( float(sum( x_list )) / len( x_list ) ) average_y = int( float(sum( y_list )) / len( y_list ) ) trimmed_center_points.append( (average_x, average_y) ) # Record that they were removed: removed_center_points += center_points_in_box if len( center_points_in_box ) == 1: trimmed_center_points.append( center_points_in_box[0] ) # Just use it. # If there are any center_points not within a bbox, just use them. # (It's probably a cluster comprised of a bunch of small bboxes.) for center_point in center_points: if (not center_point in trimmed_center_points) and (not center_point in removed_center_points): trimmed_center_points.append( center_point ) # Draw what we found: #for center_point in trimmed_center_points: # center_point = ( int(center_point[0]), int(center_point[1]) ) # cv.Circle(display_image, center_point, 20, cv.CV_RGB(255, 255,255), 1) # cv.Circle(display_image, center_point, 15, cv.CV_RGB(100, 255, 255), 1) # cv.Circle(display_image, center_point, 10, cv.CV_RGB(255, 255, 255), 2) # cv.Circle(display_image, center_point, 5, cv.CV_RGB(100, 255, 255), 3) # Determine if there are any new (or lost) targets: actual_target_count = len( trimmed_center_points ) last_target_count = actual_target_count # Now build the list of physical entities (objects) this_frame_entity_list = [] # An entity is list: [ name, color, last_time_seen, last_known_coords ] for target in trimmed_center_points: # Is this a target near a prior entity (same physical entity)? entity_found = False entity_distance_dict = {} for entity in last_frame_entity_list: entity_coords= entity[3] delta_x = entity_coords[0] - target[0] delta_y = entity_coords[1] - target[1] distance = sqrt( pow(delta_x,2) + pow( delta_y,2) ) entity_distance_dict[ distance ] = entity # Did we find any non-claimed entities (nearest to furthest): distance_list = entity_distance_dict.keys() distance_list.sort() for distance in distance_list: # Yes; see if we can claim the nearest one: nearest_possible_entity = entity_distance_dict[ distance ] # Don't consider entities that are already claimed: if nearest_possible_entity in this_frame_entity_list: #print "Target %s: Skipping the one iwth distance: %d at %s, C:%s" % (target, distance, nearest_possible_entity[3], nearest_possible_entity[1] ) #Commented Out 3/20/2016 continue #print "Target %s pixel(b,g,r) : USING the one iwth distance: %d at %s, C:%s" % (target, distance, nearest_possible_entity[3] , nearest_possible_entity[1]) # Commented Out 3/20/2016 # Found the nearest entity to claim: entity_found = True nearest_possible_entity[2] = frame_t0 # Update last_time_seen nearest_possible_entity[3] = target # Update the new location this_frame_entity_list.append( nearest_possible_entity ) #log_file.write( "%.3f MOVED %s %d %d\n" % ( frame_count, nearest_possible_entity[0], nearest_possible_entity[3][0], nearest_possible_entity[3][1] ) ) break if entity_found == False: # It's a new entity. color = ( random.randint(0,255), random.randint(0,255), random.randint(0,255) ) name = hashlib.md5( str(frame_t0) + str(color) ).hexdigest()[:6] last_time_seen = frame_t0 if imgthreshold_white[target[1],target[0]] == 0.0: # It's a real detect (not a line marker) new_entity = [ name, color, last_time_seen, target ] this_frame_entity_list.append( new_entity ) log_file.write( "%.3f %.3f FOUND %s %d %d\n" % ( frame_count/fps, frame_count, new_entity[0], new_entity[3][0], new_entity[3][1] ) ) filedrive = "C:/Users/525494/New_folder/000216/run_096/" filename = "img"+str(name) #print "gfilter is: %.2f" + gfilter cv.SaveImage("image-test%s-%3f.png"%(new_entity[0],gfilter), display_image) elif imgthreshold_white[target[1],target[0]] == 255.0: # It's a white line detect new_entity = [ name, color, last_time_seen, target ] this_frame_entity_list.append( new_entity ) log_file.write( "%.3f %.3f FOUND %s %d %d\n" % ( frame_count/fps, frame_count, new_entity[0], new_entity[3][0], new_entity[3][1] ) ) filedrive = "C:/Users/525494/New_folder/000216/run_096/" filename = "img"+str(name) #print "gfilter is: %.2f" + gfilter cv.SaveImage("white-line-image-test%s-%3f.png"%(new_entity[0],gfilter), display_image) elif imgthreshold_yellow[target[1],target[0]] == 255.0: # It's a yellow line detect new_entity = [ name, color, last_time_seen, target ] this_frame_entity_list.append( new_entity ) log_file.write( "%.3f %.3f FOUND %s %d %d\n" % ( frame_count/fps, frame_count, new_entity[0], new_entity[3][0], new_entity[3][1] ) ) filedrive = "C:/Users/525494/New_folder/000216/run_096/" filename = "img"+str(name) cv.SaveImage("yellow-line-image-test%s.png"%(new_entity[0]), camera_image) # Now "delete" any not-found entities which have expired: entity_ttl = 1.0 # 1 sec. for entity in last_frame_entity_list: last_time_seen = entity[2] if frame_t0 - last_time_seen > entity_ttl: # It's gone. #log_file.write( "%.3f STOPD %s %d %d\n" % ( frame_count, entity[0], entity[3][0], entity[3][1] ) ) pass else: # Save it for next time... not expired yet: this_frame_entity_list.append( entity ) # For next frame: last_frame_entity_list = this_frame_entity_list # Draw the found entities to screen: for entity in this_frame_entity_list: center_point = entity[3] c = entity[1] # RGB color tuple cv.Circle(display_image, center_point, 20, cv.CV_RGB(c[0], c[1], c[2]), 1) cv.Circle(display_image, center_point, 15, cv.CV_RGB(c[0], c[1], c[2]), 1) cv.Circle(display_image, center_point, 10, cv.CV_RGB(c[0], c[1], c[2]), 2) cv.Circle(display_image, center_point, 5, cv.CV_RGB(c[0], c[1], c[2]), 3) #print "min_size is: " + str(min_size) # Listen for ESC or ENTER key c = cv.WaitKey(7) % 0x100 if c == 27 or c == 10: break # Toggle which image to show if chr(c) == 'd': image_index = ( image_index + 1 ) % len( image_list ) image_name = image_list[ image_index ] # Display frame to user if image_name == "camera": image = camera_image cv.PutText( image, "Camera (Normal)", text_coord, text_font, text_color ) elif image_name == "shadow": image = fgmask cv.PutText( image, "No Shadow", text_coord, text_font, text_color ) elif image_name == "white": #image = difference image = imgthreshold_white cv.PutText( image, "White Threshold", text_coord, text_font, text_color ) elif image_name == "display": #image = display_image image = display_image cv.PutText( image, "Targets (w/AABBs and contours)", text_coord, text_font, text_color ) cv.PutText( image, str(frame_t0), text_coord2, text_font, text_color ) cv.PutText( image, str(frame_count), text_coord3, text_font, text_color ) elif image_name == "threshold": # Convert the image to color. cv.CvtColor( grey_image, display_image, cv.CV_GRAY2RGB ) image = display_image # Re-use display image here cv.PutText( image, "Motion Mask", text_coord, text_font, text_color ) elif image_name == "yellow": # Do face detection #detect_faces( camera_image, haar_cascade, mem_storage ) image = imgthreshold_yellow # Re-use camera image here cv.PutText( image, "Yellow Threshold", text_coord, text_font, text_color ) #cv.ShowImage( "Target", image ) Commented out 3/19 # self.writer.write( image ) # out.write( image ); # cv.WriteFrame( self.writer, image ); # if self.writer: # cv.WriteFrame( self.writer, image ); # video.write( image ); log_file.flush() # If only using a camera, then there is no time.sleep() needed, # because the camera clips us to 15 fps. But if reading from a file, # we need this to keep the time-based target clipping correct: frame_t1 = time.time() # If reading from a file, put in a forced delay: # if not self.writer: # delta_t = frame_t1 - frame_t0 # if delta_t < ( 1.0 / 15.0 ): time.sleep( ( 1.0 / 15.0 ) - delta_t ): if frame_count == 155740: cv2.destroyWindow("Target") # cv.ReleaseVideoWriter() # self.writer.release() # log_file.flush() break t1 = time.time() time_delta = t1 - t0 processed_fps = float( frame_count ) / time_delta print "Got %d frames. %.1f s. %f fps." % ( frame_count, time_delta, processed_fps )
cv.InRangeS(hsv, (0, 140, 10), (170, 180, 60), thr) moments = cv.Moments(cv.GetMat(thr, 1), 0) area = cv.GetCentralMoment(moments, 0, 0) cv.Line(frame, (80, 0), (80, 120), (0, 0, 255), 3, 8, 0) if (area > 10000): x = cv.GetSpatialMoment(moments, 1, 0) / area y = cv.GetSpatialMoment(moments, 0, 1) / area # overlay = cv.CreateImage(cv.GetSize(frame),8,3) cv.Circle(frame, (int(x), int(y)), 2, (255, 255, 255), 20) # cv.Add(frame,overlay,frame) # cv.Merge(thr,None,None,None,frame) if (int(x) < 80): value = 80 - int(x) cv.PutText(frame, "Left[" + str(value) + "]", (int(x), int(y)), font, (255, 255, 0)) x_count += 1 if (x_count > 10): print "Left Offset=", value pub_string = "l" + chr(int(value))
moments = cv.Moments(tr, 0) area = cv.GetCentralMoment(moments, 0, 0) #there can be noise in the video so ignore objects with small areas if (area > 100000): #determine the x and y coordinates of the center of the object #we are tracking by dividing the 1, 0 and 0, 1 moments by the area x = cv.GetSpatialMoment(moments, 1, 0) / area y = cv.GetSpatialMoment(moments, 0, 1) / area print 'x: ' + str(x) + ' y: ' + str(y) + ' area: ' + str(area) #create an overlay to mark the center of the tracked object overlay = cv.CreateImage(cv.GetSize(F), 8, 3) cv.Circle(overlay, (int(x), int(y)), 2, (255, 255, 255), 20) cv.Circle(tr, (int(x), int(y)), 50, (255, 255, 255), -20) cv.Add(F, overlay, F) #add the thresholded image back to the img so we can see what was #left after it was applied cv.Merge(tr, None, None, None, F) cv2.imshow('Varviotsing', f) cv2.imshow("thresh", thresh) if cv2.waitKey(25) == 27: break cv2.destroyAllWindows() c.release()
def run(self): # Initialize # log_file_name = "tracker_output.log" # log_file = file( log_file_name, 'a' ) print "hello" frame = cv.QueryFrame(self.capture) frame_size = cv.GetSize(frame) # Capture the first frame from webcam for image properties display_image = cv.QueryFrame(self.capture) # Greyscale image, thresholded to create the motion mask: grey_image = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 1) # The RunningAvg() function requires a 32-bit or 64-bit image... running_average_image = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_32F, 3) # ...but the AbsDiff() function requires matching image depths: running_average_in_display_color_depth = cv.CloneImage(display_image) # RAM used by FindContours(): mem_storage = cv.CreateMemStorage(0) # The difference between the running average and the current frame: difference = cv.CloneImage(display_image) target_count = 1 last_target_count = 1 last_target_change_t = 0.0 k_or_guess = 1 codebook = [] frame_count = 0 last_frame_entity_list = [] t0 = time.time() # For toggling display: image_list = [ "camera", "difference", "threshold", "display", "faces" ] image_index = 3 # Index into image_list # Prep for text drawing: text_font = cv.InitFont(cv.CV_FONT_HERSHEY_COMPLEX, .5, .5, 0.0, 1, cv.CV_AA) text_coord = (5, 15) text_color = cv.CV_RGB(255, 255, 255) ############################### # ## Face detection stuff # haar_cascade = cv.Load( 'haarcascades/haarcascade_frontalface_default.xml' ) haar_cascade = cv.Load('E:\\Softwares\\opencv\\data\\haarcascades\\haarcascade_frontalface_alt.xml') # haar_cascade = cv.Load( 'haarcascades/haarcascade_frontalface_alt2.xml' ) # haar_cascade = cv.Load( 'haarcascades/haarcascade_mcs_mouth.xml' ) # haar_cascade = cv.Load( 'haarcascades/haarcascade_eye.xml' ) # haar_cascade = cv.Load( 'haarcascades/haarcascade_frontalface_alt_tree.xml' ) # haar_cascade = cv.Load( 'haarcascades/haarcascade_upperbody.xml' ) # haar_cascade = cv.Load( 'haarcascades/haarcascade_profileface.xml' ) # Set this to the max number of targets to look for (passed to k-means): max_targets = 5 while True: # Capture frame from webcam camera_image = cv.QueryFrame(self.capture) frame_count += 1 frame_t0 = time.time() # Create an image with interactive feedback: display_image = cv.CloneImage(camera_image) # Create a working "color image" to modify / blur color_image = cv.CloneImage(display_image) # Smooth to get rid of false positives cv.Smooth(color_image, color_image, cv.CV_GAUSSIAN, 19, 0) # Use the Running Average as the static background # a = 0.020 leaves artifacts lingering way too long. # a = 0.320 works well at 320x240, 15fps. (1/a is roughly num frames.) cv.RunningAvg(color_image, running_average_image, 0.320, None) # Convert the scale of the moving average. cv.ConvertScale(running_average_image, running_average_in_display_color_depth, 1.0, 0.0) # Subtract the current frame from the moving average. cv.AbsDiff(color_image, running_average_in_display_color_depth, difference) # Convert the image to greyscale. cv.CvtColor(difference, grey_image, cv.CV_RGB2GRAY) # Threshold the image to a black and white motion mask: cv.Threshold(grey_image, grey_image, 2, 255, cv.CV_THRESH_BINARY) # Smooth and threshold again to eliminate "sparkles" cv.Smooth(grey_image, grey_image, cv.CV_GAUSSIAN, 19, 0) cv.Threshold(grey_image, grey_image, 240, 255, cv.CV_THRESH_BINARY) grey_image_as_array = numpy.asarray(cv.GetMat(grey_image)) non_black_coords_array = numpy.where(grey_image_as_array > 3) # Convert from numpy.where()'s two separate lists to one list of (x, y) tuples: non_black_coords_array = zip(non_black_coords_array[1], non_black_coords_array[0]) points = [] # Was using this to hold either pixel coords or polygon coords. bounding_box_list = [] # Now calculate movements using the white pixels as "motion" data contour = cv.FindContours(grey_image, mem_storage, cv.CV_RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE) while contour: bounding_rect = cv.BoundingRect(list(contour)) point1 = (bounding_rect[0], bounding_rect[1]) point2 = (bounding_rect[0] + bounding_rect[2], bounding_rect[1] + bounding_rect[3]) bounding_box_list.append((point1, point2)) polygon_points = cv.ApproxPoly(list(contour), mem_storage, cv.CV_POLY_APPROX_DP) # To track polygon points only (instead of every pixel): # points += list(polygon_points) # Draw the contours: # ##cv.DrawContours(color_image, contour, cv.CV_RGB(255,0,0), cv.CV_RGB(0,255,0), levels, 3, 0, (0,0) ) cv.FillPoly(grey_image, [ list(polygon_points), ], cv.CV_RGB(255, 255, 255), 0, 0) cv.PolyLine(display_image, [ polygon_points, ], 0, cv.CV_RGB(255, 255, 255), 1, 0, 0) # cv.Rectangle( display_image, point1, point2, cv.CV_RGB(120,120,120), 1) contour = contour.h_next() # Find the average size of the bbox (targets), then # remove any tiny bboxes (which are prolly just noise). # "Tiny" is defined as any box with 1/10th the area of the average box. # This reduces false positives on tiny "sparkles" noise. box_areas = [] for box in bounding_box_list: box_width = box[right][0] - box[left][0] box_height = box[bottom][0] - box[top][0] box_areas.append(box_width * box_height) # cv.Rectangle( display_image, box[0], box[1], cv.CV_RGB(255,0,0), 1) average_box_area = 0.0 if len(box_areas): average_box_area = float(sum(box_areas)) / len(box_areas) trimmed_box_list = [] for box in bounding_box_list: box_width = box[right][0] - box[left][0] box_height = box[bottom][0] - box[top][0] # Only keep the box if it's not a tiny noise box: if (box_width * box_height) > average_box_area * 0.1: trimmed_box_list.append(box) # Draw the trimmed box list: # for box in trimmed_box_list: # cv.Rectangle( display_image, box[0], box[1], cv.CV_RGB(0,255,0), 2 ) bounding_box_list = merge_collided_bboxes(trimmed_box_list) # Draw the merged box list: for box in bounding_box_list: cv.Rectangle(display_image, box[0], box[1], cv.CV_RGB(0, 255, 0), 1) # Here are our estimate points to track, based on merged & trimmed boxes: estimated_target_count = len(bounding_box_list) # Don't allow target "jumps" from few to many or many to few. # Only change the number of targets up to one target per n seconds. # This fixes the "exploding number of targets" when something stops moving # and the motion erodes to disparate little puddles all over the place. if frame_t0 - last_target_change_t < .350: # 1 change per 0.35 secs estimated_target_count = last_target_count else: if last_target_count - estimated_target_count > 1: estimated_target_count = last_target_count - 1 if estimated_target_count - last_target_count > 1: estimated_target_count = last_target_count + 1 last_target_change_t = frame_t0 # Clip to the user-supplied maximum: estimated_target_count = min(estimated_target_count, max_targets) # The estimated_target_count at this point is the maximum number of targets # we want to look for. If kmeans decides that one of our candidate # bboxes is not actually a target, we remove it from the target list below. # Using the numpy values directly (treating all pixels as points): points = non_black_coords_array center_points = [] if len(points): # If we have all the "target_count" targets from last frame, # use the previously known targets (for greater accuracy). k_or_guess = max(estimated_target_count, 1) # Need at least one target to look for. if len(codebook) == estimated_target_count: k_or_guess = codebook # points = vq.whiten(array( points )) # Don't do this! Ruins everything. codebook, distortion = vq.kmeans(array(points), k_or_guess) # Convert to tuples (and draw it to screen) for center_point in codebook: center_point = (int(center_point[0]), int(center_point[1])) center_points.append(center_point) # cv.Circle(display_image, center_point, 10, cv.CV_RGB(255, 0, 0), 2) # cv.Circle(display_image, center_point, 5, cv.CV_RGB(255, 0, 0), 3) # Now we have targets that are NOT computed from bboxes -- just # movement weights (according to kmeans). If any two targets are # within the same "bbox count", average them into a single target. # # (Any kmeans targets not within a bbox are also kept.) trimmed_center_points = [] removed_center_points = [] for box in bounding_box_list: # Find the centers within this box: center_points_in_box = [] for center_point in center_points: if center_point[0] < box[right][0] and center_point[0] > box[left][0] and \ center_point[1] < box[bottom][1] and center_point[1] > box[top][1] : # This point is within the box. center_points_in_box.append(center_point) # Now see if there are more than one. If so, merge them. if len(center_points_in_box) > 1: # Merge them: x_list = y_list = [] for point in center_points_in_box: x_list.append(point[0]) y_list.append(point[1]) average_x = int(float(sum(x_list)) / len(x_list)) average_y = int(float(sum(y_list)) / len(y_list)) trimmed_center_points.append((average_x, average_y)) # Record that they were removed: removed_center_points += center_points_in_box if len(center_points_in_box) == 1: trimmed_center_points.append(center_points_in_box[0]) # Just use it. # If there are any center_points not within a bbox, just use them. # (It's probably a cluster comprised of a bunch of small bboxes.) for center_point in center_points: if (not center_point in trimmed_center_points) and (not center_point in removed_center_points): trimmed_center_points.append(center_point) # Draw what we found: # for center_point in trimmed_center_points: # center_point = ( int(center_point[0]), int(center_point[1]) ) # cv.Circle(display_image, center_point, 20, cv.CV_RGB(255, 255,255), 1) # cv.Circle(display_image, center_point, 15, cv.CV_RGB(100, 255, 255), 1) # cv.Circle(display_image, center_point, 10, cv.CV_RGB(255, 255, 255), 2) # cv.Circle(display_image, center_point, 5, cv.CV_RGB(100, 255, 255), 3) # Determine if there are any new (or lost) targets: actual_target_count = len(trimmed_center_points) last_target_count = actual_target_count # Now build the list of physical entities (objects) this_frame_entity_list = [] # An entity is list: [ name, color, last_time_seen, last_known_coords ] for target in trimmed_center_points: # Is this a target near a prior entity (same physical entity)? entity_found = False entity_distance_dict = {} for entity in last_frame_entity_list: entity_coords = entity[3] delta_x = entity_coords[0] - target[0] delta_y = entity_coords[1] - target[1] distance = sqrt(pow(delta_x, 2) + pow(delta_y, 2)) entity_distance_dict[ distance ] = entity # Did we find any non-claimed entities (nearest to furthest): distance_list = entity_distance_dict.keys() distance_list.sort() for distance in distance_list: # Yes; see if we can claim the nearest one: nearest_possible_entity = entity_distance_dict[ distance ] # Don't consider entities that are already claimed: if nearest_possible_entity in this_frame_entity_list: # print "Target %s: Skipping the one iwth distance: %d at %s, C:%s" % (target, distance, nearest_possible_entity[3], nearest_possible_entity[1] ) continue # print "Target %s: USING the one iwth distance: %d at %s, C:%s" % (target, distance, nearest_possible_entity[3] , nearest_possible_entity[1]) # Found the nearest entity to claim: entity_found = True nearest_possible_entity[2] = frame_t0 # Update last_time_seen nearest_possible_entity[3] = target # Update the new location this_frame_entity_list.append(nearest_possible_entity) # log_file.write( "%.3f MOVED %s %d %d\n" % ( frame_t0, nearest_possible_entity[0], nearest_possible_entity[3][0], nearest_possible_entity[3][1] ) ) break if entity_found == False: # It's a new entity. color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) name = hashlib.md5(str(frame_t0) + str(color)).hexdigest()[:6] last_time_seen = frame_t0 new_entity = [ name, color, last_time_seen, target ] this_frame_entity_list.append(new_entity) # log_file.write( "%.3f FOUND %s %d %d\n" % ( frame_t0, new_entity[0], new_entity[3][0], new_entity[3][1] ) ) # Now "delete" any not-found entities which have expired: entity_ttl = 1.0 # 1 sec. for entity in last_frame_entity_list: last_time_seen = entity[2] if frame_t0 - last_time_seen > entity_ttl: # It's gone. # log_file.write( "%.3f STOPD %s %d %d\n" % ( frame_t0, entity[0], entity[3][0], entity[3][1] ) ) pass else: # Save it for next time... not expired yet: this_frame_entity_list.append(entity) # For next frame: last_frame_entity_list = this_frame_entity_list # Draw the found entities to screen: for entity in this_frame_entity_list: center_point = entity[3] c = entity[1] # RGB color tuple cv.Circle(display_image, center_point, 20, cv.CV_RGB(c[0], c[1], c[2]), 1) cv.Circle(display_image, center_point, 15, cv.CV_RGB(c[0], c[1], c[2]), 1) cv.Circle(display_image, center_point, 10, cv.CV_RGB(c[0], c[1], c[2]), 2) cv.Circle(display_image, center_point, 5, cv.CV_RGB(c[0], c[1], c[2]), 3) # print "min_size is: " + str(min_size) # Listen for ESC or ENTER key c = cv.WaitKey(7) % 0x100 if c == 27 or c == 10: break # Toggle which image to show # if chr(c) == 'd': # image_index = ( image_index + 1 ) % len( image_list ) # # image_name = image_list[ image_index ] # # # Display frame to user # if image_name == "camera": # image = camera_image # cv.PutText( image, "Camera (Normal)", text_coord, text_font, text_color ) # elif image_name == "difference": # image = difference # cv.PutText( image, "Difference Image", text_coord, text_font, text_color ) # elif image_name == "display": # image = display_image # cv.PutText( image, "Targets (w/AABBs and contours)", text_coord, text_font, text_color ) # elif image_name == "threshold": # # Convert the image to color. # cv.CvtColor( grey_image, display_image, cv.CV_GRAY2RGB ) # image = display_image # Re-use display image here # cv.PutText( image, "Motion Mask", text_coord, text_font, text_color ) # elif image_name == "faces": # # Do face detection # detect_faces( camera_image, haar_cascade, mem_storage ) # image = camera_image # Re-use camera image here # cv.PutText( image, "Face Detection", text_coord, text_font, text_color ) # cv.ShowImage( "Target", image ) image1 = display_image detect_faces(camera_image, haar_cascade, mem_storage) image2 = camera_image cv.ShowImage("Target 1", image1) cv.ShowImage("Target 2", image2) # if self.writer: # cv.WriteFrame( self.writer, image ); # log_file.flush() # If only using a camera, then there is no time.sleep() needed, # because the camera clips us to 15 fps. But if reading from a file, # we need this to keep the time-based target clipping correct: frame_t1 = time.time() # If reading from a file, put in a forced delay: if not self.writer: delta_t = frame_t1 - frame_t0 if delta_t < (1.0 / 15.0): time.sleep((1.0 / 15.0) - delta_t) [rows, cols] = cv.GetSize(frame) image = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, frame.nChannels) cv.Copy(frame, image) cv.ShowImage("camera", frame) leftImage = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, leftImage, cv.CV_BGR2GRAY) frame2 = cv.QueryFrame(self.capture2) print type(frame2) image2 = cv.CreateImage(cv.GetSize(frame2), cv.IPL_DEPTH_8U, frame2.nChannels) cv.Copy(frame2, image2) cv.ShowImage("camera2", frame2) rightImage = cv.CreateImage((image2.width, image2.height), 8, 1) cv.CvtColor(image2, rightImage, cv.CV_BGR2GRAY) disparity_left = cv.CreateMat(leftImage.height, leftImage.width, cv.CV_16S) disparity_right = cv.CreateMat(rightImage.height, rightImage.width, cv.CV_16S) # data structure initialization state = cv.CreateStereoGCState(16, 2) # print leftImage.width # print leftImage.height # print rightImage.width # print rightImage.height # running the graph-cut algorithm cv.FindStereoCorrespondenceGC(leftImage, rightImage, disparity_left, disparity_right, state) disp_left_visual = cv.CreateMat(leftImage.height, leftImage.width, cv.CV_8U) cv.ConvertScale(disparity_left, disp_left_visual, -16); # cv.Save("disparity.pgm", disp_left_visual); # save the map # # cutting the object farthest of a threshold (120) cut(disp_left_visual, leftImage, 120) # cv.NamedWindow('Disparity map', cv.CV_WINDOW_AUTOSIZE) cv.ShowImage('Disparity map', disp_left_visual) # # minimum value for the intensity maxValue = 0 maxPoint = None # now for all the moving object centers get the average intensity value for entity in this_frame_entity_list: center_point = entity[3] c = entity[1] # RGB color tuple # cv.Circle(display_image, center_point, 20, cv.CV_RGB(c[0], c[1], c[2]), 1) # cv.Circle(display_image, center_point, 15, cv.CV_RGB(c[0], c[1], c[2]), 1) # cv.Circle(display_image, center_point, 10, cv.CV_RGB(c[0], c[1], c[2]), 2) # cv.Circle(display_image, center_point, 5, cv.CV_RGB(c[0], c[1], c[2]), 3) # cv.Avg(arr) print center_point print type(disp_left_visual) print size(disp_left_visual) print center_point print "value " + str(cv.Get2D(disp_left_visual, center_point[1], center_point[0])) value = cv.Get2D(disp_left_visual, center_point[1], center_point[0])[0] + cv.Get2D(disp_left_visual, center_point[1], center_point[0])[1] + cv.Get2D(disp_left_visual, center_point[1], center_point[0])[2] if value > maxValue: maxValue = value maxPoint = center_point print "min value is " + str(maxValue) print " min point is " + str(maxPoint) if maxPoint != None: cv.Circle(display_image, maxPoint, 17, cv.CV_RGB(100, 100, 100), 1) #distance = 1 / maxValue # find if it is right or left or in the middle if maxValue > 100: middle = width / 2 if maxPoint[0] > middle + 20: message = "look left" elif maxPoint[0] < middle - 20: message = "look right" else: message = "look middle" print "message " + message t1 = time.time() time_delta = t1 - t0 processed_fps = float(frame_count) / time_delta print "Got %d frames. %.1f s. %f fps." % (frame_count, time_delta, processed_fps)
if add_remove_pt: # we have a point to add, so see if it is close to # another one. If yes, don't use it def ptptdist(p0, p1): dx = p0[0] - p1[0] dy = p0[1] - p1[1] return dx**2 + dy**2 if min([ptptdist(pt, p) for p in features]) < 25: # too close add_remove_pt = 0 # draw the points as green circles for the_point in features: cv.Circle(image, (int(the_point[0]), int(the_point[1])), 3, (0, 255, 0, 0), -1, 8, 0) if add_remove_pt: # we want to add a point # refine this corner location and append it to 'features' features += cv.FindCornerSubPix( grey, [pt], (win_size, win_size), (-1, -1), (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03)) # we are no longer in "add_remove_pt" mode add_remove_pt = False # swapping prev_grey, grey = grey, prev_grey prev_pyramid, pyramid = pyramid, prev_pyramid need_to_init = False
def update_mhi(img, dst, diff_threshold): global last global mhi global storage global mask global orient global segmask timestamp = time.clock() / CLOCKS_PER_SEC # get current time in seconds size = cv.GetSize(img) # get current frame size idx1 = last if not mhi or cv.GetSize(mhi) != size: for i in range(N): buf[i] = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1) cv.Zero(buf[i]) mhi = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1) cv.Zero(mhi) # clear MHI at the beginning orient = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1) segmask = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1) mask = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1) cv.CvtColor(img, buf[last], cv.CV_BGR2GRAY) # convert frame to grayscale idx2 = (last + 1) % N # index of (last - (N-1))th frame last = idx2 silh = buf[idx2] cv.AbsDiff(buf[idx1], buf[idx2], silh) # get difference between frames cv.Threshold(silh, silh, diff_threshold, 1, cv.CV_THRESH_BINARY) # and threshold it cv.UpdateMotionHistory(silh, mhi, timestamp, MHI_DURATION) # update MHI cv.CvtScale(mhi, mask, 255. / MHI_DURATION, (MHI_DURATION - timestamp) * 255. / MHI_DURATION) cv.Zero(dst) cv.Merge(mask, None, None, None, dst) cv.CalcMotionGradient(mhi, mask, orient, MAX_TIME_DELTA, MIN_TIME_DELTA, 3) if not storage: storage = cv.CreateMemStorage(0) seq = cv.SegmentMotion(mhi, segmask, storage, timestamp, MAX_TIME_DELTA) for (area, value, comp_rect) in seq: if comp_rect[2] + comp_rect[3] > 100: # reject very small components color = cv.CV_RGB(255, 0, 0) silh_roi = cv.GetSubRect(silh, comp_rect) mhi_roi = cv.GetSubRect(mhi, comp_rect) orient_roi = cv.GetSubRect(orient, comp_rect) mask_roi = cv.GetSubRect(mask, comp_rect) angle = 360 - cv.CalcGlobalOrientation( orient_roi, mask_roi, mhi_roi, timestamp, MHI_DURATION) count = cv.Norm( silh_roi, None, cv.CV_L1, None) # calculate number of points within silhouette ROI if count < (comp_rect[2] * comp_rect[3] * 0.05): continue magnitude = 30. center = ((comp_rect[0] + comp_rect[2] / 2), (comp_rect[1] + comp_rect[3] / 2)) cv.Circle(dst, center, cv.Round(magnitude * 1.2), color, 3, cv.CV_AA, 0) cv.Line( dst, center, (cv.Round(center[0] + magnitude * cos(angle * cv.CV_PI / 180)), cv.Round(center[1] - magnitude * sin(angle * cv.CV_PI / 180))), color, 3, cv.CV_AA, 0)
nb = abs(int(prev_points[i][0]) - int(curr_points[i][0])) + abs( int(prev_points[i][1]) - int(curr_points[i][1])) if status[i] and nb > 2: prev_points[k] = prev_points[i] curr_points[k] = curr_points[i] k += 1 prev_points = prev_points[:k] curr_points = curr_points[:k] #At the end only interesting points are kept #Draw all the previously kept lines otherwise they would be lost the next frame for (pt1, pt2) in lines: cv.Line(frame, pt1, pt2, (255, 255, 255)) #Draw the lines between each points at t-1 and t for prevpoint, point in zip(prev_points, curr_points): prevpoint = (int(prevpoint[0]), int(prevpoint[1])) cv.Circle(frame, prevpoint, 15, 0) point = (int(point[0]), int(point[1])) cv.Circle(frame, point, 3, 255) cv.Line(frame, prevpoint, point, (255, 255, 255)) lines.append( (prevpoint, point)) #Append current lines to the lines list cv.Copy(gray, prev_gray) #Put the current frame prev_gray prev_points = curr_points cv.ShowImage("The Video", frame) #cv.WriteFrame(writer, frame) cv.WaitKey(wait)