Esempio n. 1
0
 def find_lines_in_map_probabilistic(self, map_img):
     #Finds lines in the image using the probabilistic hough transform
     lines=cv.CreateMemStorage(0)
     line_img=cv.CreateMat(map_img.height, map_img.width, cv.CV_8UC1)
     cv.Set(line_img, 255)
     lines = cv.HoughLines2(map_img,cv.CreateMemStorage(), cv.CV_HOUGH_PROBABILISTIC, self.hough_rho,np.pi/2,self.hough_threshold)
     np_line=np.asarray(lines)
     print "list of probabilistic lines: ", np_line
Esempio n. 2
0
def DetectRedEyes(image, faceCascade, eyeCascade):
	min_size = (20,20)
	image_scale = 2
	haar_scale = 1.2
	min_neighbors = 2
	haar_flags = 0

	# Allocate the temporary images
	gray = cv.CreateImage((image.width, image.height), 8, 1)
	smallImage = cv.CreateImage((cv.Round(image.width / image_scale),cv.Round (image.height / image_scale)), 8 ,1)

	# Convert color input image to grayscale
	cv.CvtColor(image, gray, cv.CV_BGR2GRAY)

	# Scale input image for faster processing
	cv.Resize(gray, smallImage, cv.CV_INTER_LINEAR)

	# Equalize the histogram
	cv.EqualizeHist(smallImage, smallImage)

	# Detect the faces
	faces = cv.HaarDetectObjects(smallImage, faceCascade, cv.CreateMemStorage(0),
	haar_scale, min_neighbors, haar_flags, min_size)

	# If faces are found
	if faces:
		for ((x, y, w, h), n) in faces:
		# the input to cv.HaarDetectObjects was resized, so scale the
		# bounding box of each face and convert it to two CvPoints
			pt1 = (int(x * image_scale), int(y * image_scale))
			pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
			cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
			face_region = cv.GetSubRect(image,(x,int(y + (h/4)),w,int(h/2)))

		cv.SetImageROI(image, (pt1[0],
			pt1[1],
			pt2[0] - pt1[0],
			int((pt2[1] - pt1[1]) * 0.7)))
		eyes = cv.HaarDetectObjects(image, eyeCascade,
		cv.CreateMemStorage(0),
		haar_scale, min_neighbors,
		haar_flags, (15,15))	

		if eyes:
			# For each eye found
			for eye in eyes:
				# Draw a rectangle around the eye
				cv.Rectangle(image,
				(eye[0][0],
				eye[0][1]),
				(eye[0][0] + eye[0][2],
				eye[0][1] + eye[0][3]),
				cv.RGB(255, 0, 0), 1, 8, 0)

	cv.ResetImageROI(image)
	return image
Esempio n. 3
0
def detect_and_draw(img, front_cascade, profile_cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width,img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
                   cv.Round (img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if(front_cascade):
        # Test for frontal face
        faces = cv.HaarDetectObjects(small_img, front_cascade, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)
        if faces: # we've detected a face
            return [faces, FRONTAL]

        # Test for profile face
        faces = cv.HaarDetectObjects(small_img, profile_cascade, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)
        if faces: # we've detected a face
            return [faces, PROFILE]

        #t = cv.GetTickCount() - t
        #print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
        #if faces:
            #for ((x, y, w, h), n) in faces:
                ## the input to cv.HaarDetectObjects was resized, so scale the
                ## bounding box of each face and convert it to two CvPoints
                #pt1 = (int(x * image_scale), int(y * image_scale))
                #pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))

                #imgWidth, imgHeight = cv.GetSize(img)
                #croppedX = max(0, x*image_scale-w*image_scale/2) 
                #croppedY = max(0, y*image_scale-h*image_scale/2)
                #croppedW = min(imgWidth, (2*w)*image_scale)
                #croppedH = min(imgHeight, (2*h)*image_scale)

                #imgCropped = cv.CreateImage((croppedW, croppedH), img.depth, img.nChannels)
                #srcRegion = cv.GetSubRect(img, (croppedX, croppedY, croppedW, croppedH))
                #cv.Copy(srcRegion, imgCropped)
                #cv.ShowImage("cropped", imgCropped)

                #cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

    return []
Esempio n. 4
0
 def ifFace(img,size):
     gray=cv.CreateImage(size,8,1)
     cv.CvtColor(img,gray,cv.CV_BGR2GRAY)
     newMem1=cv.CreateMemStorage(0)
     newMem2=cv.CreateMemStorage(0)
     newMem3=cv.CreateMemStorage(0)
     cv.EqualizeHist(gray,gray)
     face=cv.HaarDetectObjects(gray,c_f,newMem1,1.2,3,cv.CV_HAAR_DO_CANNY_PRUNING,(50,50))
     mouth=cv.HaarDetectObjects(gray,c_m,newMem2,1.2,2,cv.CV_HAAR_DO_CANNY_PRUNING,(10,10))
     body=cv.HaarDetectObjects(gray,c_m,newMem3,1.2,2,cv.CV_HAAR_DO_CANNY_PRUNING,(100,100))
     if face and mouth or body:
         cv.SaveImage("img/out.jpg",img)
         return 1
     else:
         return 0
Esempio n. 5
0
 def detectRightEye(self, img, rightEyeArea, centerX, centerY, pt1, cascade2):
     rightEye = cv.HaarDetectObjects(rightEyeArea, cascade2, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)
     # in case of multiple find the maximum box
     minArea = 0
     pt3 = (0, 0)
     pt4 = (0, 0)
     if rightEye:
         for ((x, y, w, h), n) in rightEye:
             # the input to cv.HaarDetectObjects was resized, so scale the
             # bounding box of each face and convert it to two CvPoints
             if(w * h > minArea):
                 minArea = w * h
                 pt3 = (x, y)
                 pt4 = (x + w, y + h)
 #                         pt3 = (int(x * image_scale), int(y * image_scale))
 #                         pt4 = (int((x + w) * image_scale), int((y + h) * image_scale))
 #                         print "point 3 " + str(pt3)
 #                         print "point 4 " + str(pt4)
 #                         
 #                         cv.Rectangle(img, (centerX + pt3[0], pt1[1] + pt3[1]),(centerX + pt4[0], pt1[1] + pt4[1]), cv.RGB(0, 255, 255))
 #                         cv.Rectangle(img, pt3, pt4, cv.RGB(0, 0, 255))
     if(minArea > 0):       
         cv.Rectangle(img, (centerX + pt3[0], pt1[1] + pt3[1]), (centerX + pt4[0], pt1[1] + pt4[1]), cv.RGB(0, 255, 255))
         pointX = centerX + pt3[0] + 10
         pointY = pt1[1] + pt3[1] + 10
         distanceX = pt4[0] - pt3[0] - 10
         distanceY = pt4[1] - pt3[1] - 10
         eyePart = cv.GetSubRect(img, (pointX, pointY, distanceX, distanceY))
def detect_face(img):

    haarFace = cv.Load('./haarcascade_frontalface_default.xml')

    #RGB_img = cv.fromarray(np.array(rgb[:,:,::-1]))
    allFaces = cv.HaarDetectObjects(cv.fromarray(img),
                                    haarFace,
                                    cv.CreateMemStorage(),
                                    scale_factor=1.1,
                                    min_neighbors=3,
                                    flags=0,
                                    min_size=(50, 50))

    # Get confidences
    if (allFaces != []):
        count_no_face = 0
        #print(allFaces)
        face_confid = [c for ((x, y, w, h), c) in allFaces]

        max_ind = np.argmax(face_confid)
        FINAL_FACE = allFaces[max_ind]

        return FINAL_FACE[0]

    else:
        return []
Esempio n. 7
0
def getContours(im, approx_value=1):  #Return contours approximated
    storage = cv.CreateMemStorage(0)
    contours = cv.FindContours(cv.CloneImage(im), storage, cv.CV_RETR_CCOMP,
                               cv.CV_CHAIN_APPROX_SIMPLE)
    contourLow = cv.ApproxPoly(contours, storage, cv.CV_POLY_APPROX_DP,
                               approx_value, approx_value)
    return contourLow
Esempio n. 8
0
def findImageContour(img, frame):
    storage = cv.CreateMemStorage()
    cont = cv.FindContours(img, storage, cv.CV_RETR_EXTERNAL,
                           cv.CV_CHAIN_APPROX_NONE, (0, 0))
    max_center = [None, 0]
    for c in contour_iterator(cont):
        # Number of points must be more than or equal to 6 for cv.FitEllipse2
        # Use to set minimum size of object to be tracked.
        if len(c) >= 60:
            # Copy the contour into an array of (x,y)s
            PointArray2D32f = cv.CreateMat(1, len(c), cv.CV_32FC2)
            for (i, (x, y)) in enumerate(c):
                PointArray2D32f[0, i] = (x, y)
                # Fits ellipse to current contour.
                (center, size, angle) = cv.FitEllipse2(PointArray2D32f)
                # Only consider location of biggest contour  -- adapt for multiple object tracking
            if size > max_center[1]:
                max_center[0] = center
                max_center[1] = size
                angle = angle

            if True:
                # Draw the current contour in gray
                gray = cv.CV_RGB(255, 255, 255)
                cv.DrawContours(img, c, gray, gray, 0, 1, 8, (0, 0))

    if max_center[1] > 0:
        # Convert ellipse data from float to integer representation.
        center = (cv.Round(max_center[0][0]), cv.Round(max_center[0][1]))
        size = (cv.Round(max_center[1][0] * 0.5),
                cv.Round(max_center[1][1] * 0.5))
        color = cv.CV_RGB(255, 0, 0)

        cv.Ellipse(frame, center, size, angle, 0, 360, color, 3, cv.CV_AA, 0)
Esempio n. 9
0
def detectFace(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage(
        (cv.Round(img.width / imageScale), cv.Round(img.height / imageScale)),
        8, 1)
    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
    cv.EqualizeHist(small_img, small_img)
    faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
                                 haarScale, minNeighbors, haarFlags, minSize)

    if faces:
        print "\tDetected ", len(faces), " object(s)"
        for ((x, y, w, h), n) in faces:
            #the input to cv.HaarDetectObjects was resized, scale the
            #bounding box of each face and convert it to two CvPoints
            pt1 = (int(x * imageScale), int(y * imageScale))
            pt2 = (int((x + w) * imageScale), int((y + h) * imageScale))
            cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
        return img

    else:
        return False
Esempio n. 10
0
def capture():
    """
        Using the intel training set to capture the face in the video.
        Most of them are frameworks in OpenCV.
    """
    j = 0
    g = os.walk("origin")
    for path, d, filelist in g:
        for filename in filelist:
            img = cv.LoadImage(os.path.join(path, filename))
            image_size = cv.GetSize(img)
            greyscale = cv.CreateImage(image_size, 8, 1)
            cv.CvtColor(img, greyscale, cv.CV_BGR2GRAY)
            storage = cv.CreateMemStorage(0)

            cv.EqualizeHist(greyscale, greyscale)
            cascade = cv.Load('haarcascade_frontalface_alt2.xml')

            faces = cv.HaarDetectObjects(greyscale, cascade, storage, 1.2, 2,
                                         cv.CV_HAAR_DO_CANNY_PRUNING, (50, 50))

            for (x, y, w, h), n in faces:
                j += 1
                cv.SetImageROI(img, (x, y, w, h))
                cv.SaveImage("captured/face" + str(j) + ".png", img)
Esempio n. 11
0
def handel_camera_image(img, hc):
    #resize it
    img2 = cv.CreateMat(
        cv.GetSize(img)[1] / 2,
        cv.GetSize(img)[0] / 2, cv.CV_8UC3)
    cv.Resize(img, img2)

    #convert to grayscale
    img_gray = cv.CreateImage(cv.GetSize(img2), 8, 1)
    cv.CvtColor(img2, img_gray, cv.CV_RGB2GRAY)

    #set the final image
    img_f = img_gray

    #detect faces from it
    objects = cv.HaarDetectObjects(img_f, hc, cv.CreateMemStorage())
    number_of_faces = len(objects)

    if number_of_faces != 1:
        if debug:
            print "Error! Number of detected faces: " + str(number_of_faces)
        return None
    else:
        for (x, y, w, h), n in objects:
            #annotate the image
            cv.Rectangle(img_f, (x, y), (x + w, y + h), 255)
            if debug:
                print "FACE -> h: " + str(h) + ", w: " + str(
                    w) + ", r(w/h): " + str(float(w) / float(h))

            #resize to 64 to 64
            img_r = resize_crop_img(img_f, x, y, w, h)
            return (img_f, img_r)
    def detect_and_draw(self, img, cascade, camera_position=0):
        min_size = (20, 20)
        image_scale = self.horizontalSlider_3.value()
        haar_scale = 1.2
        min_neighbors = 2
        haar_flags = 0
        # allocate temporary images
        gray = cv.CreateImage((img.width, img.height), 8, 1)
        small_img_height = cv.Round(img.height / image_scale)
        small_img = cv.CreateImage(
            (cv.Round(img.width / image_scale), small_img_height), 8, 1)
        # convert color input image to grayscale
        cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
        # scale input image for faster processing
        cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
        cv.EqualizeHist(small_img, small_img)

        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        if faces:
            for ((x, y, w, h), n) in faces:
                if self.face_cert < n:
                    x2, y2, w2, h2 = self.make_the_rectangle_bigger(
                        x, y, w, h, 1.22, small_img_height, image_scale)
                    self.create_person_and_add_to_room(img, (x2, y2, w2, h2),
                                                       camera_position)
                    if self.mark_detected_objects[camera_position]:
                        pt2 = (int(x2 + w2), int(y2 + h2))
                        cv.Rectangle(img, (x2, y2), pt2, cv.RGB(255, 0, 0), 3,
                                     8, 0)
        if self.show_main_view[camera_position]:
            cv.ShowImage("result" + str(camera_position), img)
Esempio n. 13
0
def DetectFace(image, faceCascade, returnImage=False):
    # This function takes a grey scale cv image and finds
    # the patterns defined in the haarcascade function
    # modified from: http://www.lucaamore.com/?p=638

    #variables
    min_size = (30, 30)
    #image_scale = 2
    haar_scale = 1.1
    min_neighbors = 2
    haar_flags = 0

    # Equalize the histogram
    cv.EqualizeHist(image, image)

    # Detect the faces
    faces = cv.HaarDetectObjects(image, faceCascade, cv.CreateMemStorage(0),
                                 haar_scale, min_neighbors, haar_flags,
                                 min_size)

    # If faces are found
    if faces and returnImage:
        for ((x, y, w, h), n) in faces:
            # Convert bounding box to two CvPoints
            pt1 = (int(x), int(y))
            pt2 = (int(x + w), int(y + h))
            cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 5, 8, 0)

    if returnImage:
        return image
    else:
        return faces
Esempio n. 14
0
def detect_and_draw(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
                                cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if(cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
            haar_scale, min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t / (cv.GetTickFrequency() * 1000.))
        if faces:
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the 
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

    cv.ShowImage("result", img)
Esempio n. 15
0
    def __init__(self, parent=None):
        QWidget.__init__(self)
        self.setMinimumSize(640, 480)
        self.setMaximumSize(self.minimumSize())

        # register this callbacks to interact with the faces and the camera
        # image before the widget will view the frame
        self.image_callback = None
        self.face_callback = None

        # init view with correct size, depth, channels
        self.frame = cv.CreateImage((640, 480), cv.IPL_DEPTH_8U, 3)

        self.storage = cv.CreateMemStorage()
        self.capture = cv.CaptureFromCAM(0)
        self.face_cascade = cv.Load(CSC_PATH +
                                    "haarcascade_frontalface_alt.xml")
        self.fd_wait_frames = 1
        self._fd_wait = self.fd_wait_frames

        # get first frame
        self._query_frame()

        # set refresh rate
        self.timer = QTimer(self)
        self.timer.timeout.connect(self._query_frame)
        self.timer.start(75)
Esempio n. 16
0
    def detect_face(self, image):
        min_size = (20, 20)
        image_scale = 2
        haar_scale = 1.1
        min_neighbors = 2
        haar_flags = 0

        # Allocate the temporary images
        gray = cv.CreateImage((image.width, image.height), 8, 1)
        smallImage = cv.CreateImage((cv.Round(
            image.width / image_scale), cv.Round(image.height / image_scale)),
                                    8, 1)

        # Convert color input image to grayscale
        cv.CvtColor(image, gray, cv.CV_BGR2GRAY)

        # Scale input image for faster processing
        cv.Resize(gray, smallImage, cv.CV_INTER_LINEAR)

        # Equalize the histogram
        cv.EqualizeHist(smallImage, smallImage)

        # Detect the faces
        faces = cv.HaarDetectObjects(smallImage, self.cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)

        return faces
def HandDetection(file):   
    
    img=cv2.imread(file,0)
    #get size of input image
    w,h=img.shape[:2]
    #create grayscale version
    gray=np.zeros((h,w,3),np.uint8)

    #cv2.cvtColor(img, gray)
    gray=img
#     cv2.imshow('winname', gray)
#     cv2.waitKey(0)
    #create storage
    storage=cv.CreateMemStorage(0)
    #equalize histogram
#     cv.EqualizeHist(gray, gray)
    cascade_hand= cv2.CascadeClassifier('mycascade.xml')
    
    hands=cascade_hand.detectMultiScale(img, scaleFactor=1.3, 
                                        minNeighbors=2, minSize=(24,24), 
                                        flags=cv.CV_HAAR_DO_CANNY_PRUNING)
    
    
    for (x,y,w,h) in hands:
        cv2.rectangle(img, (x,y), (x+w,y+h), 255)
        
    cv2.imshow('winname', img)
    cv2.waitKey(0)
Esempio n. 18
0
    def findEyes(self):
        """ Detects eyes in a photo and initializes relevant attributes

        Uses opencv libarary methods to detect a face and then detect the
        eyes in that face. If there are exactly two eye regions found it
        populates the region attributes. If not exactly two
        eye regions are found the method returns false.

        Args:
            None

        Return:
            bool - True if there were no issues. False for any error
        """
        
        #imcolor = cv.LoadImage(self.path)
        imcolor = self.facePhoto

        #Path setups
        cwd = os.path.dirname(os.path.abspath(sys.argv[0]))
        cwd += "/opencv/haarcascades/"
        frontalface = cwd + "haarcascade_frontalface_default.xml"
        eye = cwd + "haarcascade_eye.xml"

        faceCascade = cv.Load(frontalface)
        eyeCascade = cv.Load(eye)
        
        haarEyes = cv.Load(eye)
        storage = cv.CreateMemStorage()
        detectedEyes = cv.HaarDetectObjects(imcolor,haarEyes,storage)

        if DEBUG:
            print "detectedEyes = " + str(detectedEyes)

        if len(detectedEyes) == 2:
            if DEBUG:
                # Draw the rectangle 
                cv.Rectangle(imcolor,(detectedEyes[0][0][0], detectedEyes[0][0][1]), 
                    (detectedEyes[0][0][0] + detectedEyes[0][0][2], 
                    detectedEyes[0][0][1] + detectedEyes[0][0][3]),cv.RGB(155,155,200),2)
                cv.Rectangle(imcolor,(detectedEyes[1][0][0], detectedEyes[1][0][1]), 
                    (detectedEyes[1][0][0] + detectedEyes[1][0][2], 
                    detectedEyes[1][0][1] + detectedEyes[1][0][3]),cv.RGB(155,155,200),2)
                cv.ShowImage("Face with eyes",imcolor)
                cv.WaitKey(0)
                cv.DestroyWindow("Face with eyes")
            left = (detectedEyes[0][0][0], detectedEyes[0][0][1], 
                    detectedEyes[0][0][0] + detectedEyes[0][0][2], 
                    detectedEyes[0][0][1] + detectedEyes[0][0][3])
            right = (detectedEyes[1][0][0], detectedEyes[1][0][1], 
                    detectedEyes[1][0][0] + detectedEyes[1][0][2], 
                    detectedEyes[1][0][1] + detectedEyes[1][0][3])
            if DEBUG:
                print "left: " + str(left)
                print "right: " + str(right)
            self.setEyes(left, right)
            return True
        if DEBUG:
            print "Found more or less than 2 eyes, returning false"
        return False
Esempio n. 19
0
def detect_and_draw(img, face_cascade):
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    image_scale = img.width / smallwidth

    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)
    # gray = cv.CreateImage((img.width,img.height), 8, 1)
    image_scale = img.width / smallwidth
    # small_img = cv.CreateImage((cv.Round(img.width / image_scale), cv.Round (img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    faces = cv.HaarDetectObjects(small_img, face_cascade,
                                 cv.CreateMemStorage(0), haar_scale,
                                 min_neighbors, haar_flags, min_size)

    if opencv_preview and faces:
        for ((x, y, w, h), n) in faces:
            # the input to cv.HaarDetectObjects was resized, so scale the
            # bounding box of each face and convert it to two CvPoints
            pt1 = (int(x * image_scale), int(y * image_scale))
            pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
            cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
            if verbose:
                print "Face at: ", pt1[0], ",", pt2[0], "\t", pt1[1], ",", pt2[
                    1]

    return True if faces else False
Esempio n. 20
0
 def detectLeftEye(self, originalImage, cascade2, pt1, centerX, centerY):
     
     
     leftEyeArea = cv.GetSubRect(originalImage, (pt1[0], pt1[1], centerX - pt1[0], centerY - pt1[1]))
     
     
     leftEye = cv.HaarDetectObjects(leftEyeArea, cascade2, cv.CreateMemStorage(0),
                                   haar_scale, min_neighbors, haar_flags, min_size)
     # in case of multiple find the maximum box
     minArea = 0
     pt3 = (0, 0)
     pt4 = (0, 0)
     if leftEye:
         for ((x, y, w, h), n) in leftEye:
             # the input to cv.HaarDetectObjects was resized, so scale the
             # bounding box of each face and convert it to two CvPoints
             if(w * h > minArea):
                 minArea = w * h
                 pt3 = (x, y)
                 pt4 = (x + w, y + h)
                 
                 
     if(minArea > 0):
         cv.Rectangle(originalImage, (pt1[0] + pt3[0], pt1[1] + pt3[1]), (pt1[0] + pt4[0], pt1[1] + pt4[1]), cv.RGB(255, 255, 0)) 
         pointX = pt1[0] + pt3[0] + 10
         pointY = pt1[1] + pt3[1] + 10
         distanceX = pt4[0] - pt3[0] - 10
         distanceY = pt4[1] - pt3[1] - 10
         eyePart = cv.GetSubRect(originalImage, (pointX, pointY, distanceX, distanceY))
Esempio n. 21
0
def detect_face(RGB_img):
    # Image Properties
    #print('Image Size: ({},{})'.format(cv.GetCaptureProperty(CAM_CAPT, cv.CV_CAP_PROP_FRAME_HEIGHT), cv.GetCaptureProperty(CAM_CAPT, cv.CV_CAP_PROP_FRAME_WIDTH)))
    #print('FPS: {}'.format(cv.GetCaptureProperty(CAM_CAPT, cv.CV_CAP_PROP_FPS)))

    RGB_img_mat = cv.fromarray(RGB_img)

    haarFace = cv.Load('haarcascade_frontalface_default.xml')

    #RGB_img = cv.fromarray(np.array(rgb[:,:,::-1]))
    allFaces = cv.HaarDetectObjects(RGB_img_mat,
                                    haarFace,
                                    cv.CreateMemStorage(),
                                    scale_factor=1.1,
                                    min_neighbors=10,
                                    flags=0,
                                    min_size=(50, 50))

    # Get confidences
    if (allFaces != []):

        #print(allFaces)
        face_confid = [c for ((x, y, w, h), c) in allFaces]
        area = [w * h for ((x, y, w, h), c) in allFaces]

        #max_ind = np.argmax(face_confid)
        max_ind = np.argmax(area)
        FINAL_FACE = allFaces[max_ind]

        x0 = FINAL_FACE[0][0]
        y0 = FINAL_FACE[0][1]
        w = FINAL_FACE[0][2]
        h = FINAL_FACE[0][3]

        # Show detected face
        print('Face Detected!!')
        #cv.Rectangle(RGB_img_mat, (x0, y0), (x0+w, y0+h), cv.RGB(0,0,255), 2)

        # Detect eyes only in given face region
        print('Face: ' + str(FINAL_FACE))
        cropped_img = RGB_img[y0:y0 + h, x0:x0 + w]

        #cv.Smooth(cropped_img, cropped_img, cv.CV_GAUSSIAN, 15, 15)
        #print(cv.GetSize(cropped_img))
        #cv.ShowImage('crop', cropped_img)
        #cv.SaveImage('IMAGE.png', cropped_img)
        #allEyes = detect_eyes(cropped_img)

        #print('Eyes: '+str(allEyes))
        #for eye in allEyes:
        #   eye = eye[0]
        #	eye=(eye[0]+x0, eye[1]+y0, eye[2], eye[3])
        #	cv.Rectangle(RGB_img, (eye[0], eye[1]), (eye[0]+eye[2], eye[1]+eye[3]), cv.RGB(255,0,0), 2)

        return np.asarray(cropped_img[:, :])

    else:
        print('No Face!!')
        return RGB_img
Esempio n. 22
0
def detect_and_draw(img, cascade, jpg_cnt):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if (cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t / (cv.GetTickFrequency() * 10000))
        if faces:
            for ((x, y, w, h), n) in faces:

                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))

                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

                if jpg_cnt % 50 == 1:
                    print('capture completed')
                    cv.SaveImage('test_' + str(jpg_cnt) + '.jpg', img)
                    print("aaa1")
                    url = 'http://210.94.185.52:8080/upload.php'
                    #files={ 'upfiles' : open('/home/lee/test_'+str(jpg_cnt)+'.jpg','rb')}
                    files = {
                        'upfiles':
                        open('/home/lee/test_' + str(jpg_cnt) + '.jpg', 'rb')
                    }
                    print("aaa2")
                    r = requests.post(url, files=files)
                    print("aaa3")
                    print(r.text)
                    for i in r.text.split():
                        try:
                            op = float(i)
                            break
                        except:
                            continue
                    print(op)
                    #LED
                    if op >= 0.9:
                        lock_on()
                    else:
                        print('no')

    cv.ShowImage("result", img)
Esempio n. 23
0
def update_mhi(img, dst, diff_threshold):
    global last
    global mhi
    global storage
    global mask
    global orient
    global segmask
    timestamp = time.clock() / CLOCKS_PER_SEC # get current time in seconds
    size = cv.GetSize(img) # get current frame size
    idx1 = last
    if not mhi or cv.GetSize(mhi) != size:
        for i in range(N):
            buf[i] = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
            cv.Zero(buf[i])
        mhi = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        cv.Zero(mhi) # clear MHI at the beginning
        orient = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        segmask = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        mask = cv.CreateImage(size,cv. IPL_DEPTH_8U, 1)

    cv.CvtColor(img, buf[last], cv.CV_BGR2GRAY) # convert frame to grayscale
    idx2 = (last + 1) % N # index of (last - (N-1))th frame
    last = idx2
    silh = buf[idx2]
    cv.AbsDiff(buf[idx1], buf[idx2], silh) # get difference between frames
    cv.Threshold(silh, silh, diff_threshold, 1, cv.CV_THRESH_BINARY) # and threshold it
    cv.UpdateMotionHistory(silh, mhi, timestamp, MHI_DURATION) # update MHI
    cv.CvtScale(mhi, mask, 255./MHI_DURATION,
                (MHI_DURATION - timestamp)*255./MHI_DURATION)
    cv.Zero(dst)
    cv.Merge(mask, None, None, None, dst)
    cv.CalcMotionGradient(mhi, mask, orient, MAX_TIME_DELTA, MIN_TIME_DELTA, 3)
    if not storage:
        storage = cv.CreateMemStorage(0)
    seq = cv.SegmentMotion(mhi, segmask, storage, timestamp, MAX_TIME_DELTA)
    for (area, value, comp_rect) in seq:
        if comp_rect[2] + comp_rect[3] > 100: # reject very small components
            color = cv.CV_RGB(255, 0,0)
            silh_roi = cv.GetSubRect(silh, comp_rect)
            mhi_roi = cv.GetSubRect(mhi, comp_rect)
            orient_roi = cv.GetSubRect(orient, comp_rect)
            mask_roi = cv.GetSubRect(mask, comp_rect)
            angle = 360 - cv.CalcGlobalOrientation(orient_roi, mask_roi, mhi_roi, timestamp, MHI_DURATION)

            count = cv.Norm(silh_roi, None, cv.CV_L1, None) # calculate number of points within silhouette ROI
            if count < (comp_rect[2] * comp_rect[3] * 0.05):
                continue

            magnitude = 30.
            center = ((comp_rect[0] + comp_rect[2] / 2), (comp_rect[1] + comp_rect[3] / 2))
            cv.Circle(dst, center, cv.Round(magnitude*1.2), color, 3, cv.CV_AA, 0)
            cv.Line(dst,
                    center,
                    (cv.Round(center[0] + magnitude * cos(angle * cv.CV_PI / 180)),
                     cv.Round(center[1] - magnitude * sin(angle * cv.CV_PI / 180))),
                    color,
                    3,
                    cv.CV_AA,
                    0)
Esempio n. 24
0
def find_Lines(im):
    out = cv.CreateImage(cv.GetSize(im), 8, 1)
    tmp = cv.CreateImage(cv.GetSize(im), 8, 3)
    storage = cv.CreateMemStorage(0)
    cv.Canny(im, out, 50, 200, 3)
    cv.CvtColor(out, tmp, cv.CV_GRAY2BGR)
    return cv.HoughLines2(out, storage, cv.CV_HOUGH_STANDARD, 1, pi / 180, 100,
                          0, 0)
Esempio n. 25
0
def track(img, threshold=100):
    '''Accepts BGR image and optional object threshold between 0 and 255 (default = 100).
       Returns: (x,y) coordinates of centroid if found
                (-1,-1) if no centroid was found
                None if user hit ESC
    '''
    cascade = cv.Load("haarcascade_frontalface_default.xml")
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    center = (-1, -1)
    faces = []
    original_size_faces = []
    #import ipdb; ipdb.set_trace()
    if (cascade):
        t = cv.GetTickCount()
        # HaarDetectObjects takes 0.02s
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        if faces:
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                # cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
                #cv.Rectangle(img, (x,y), (x+w,y+h), 255)
                # get the xy corner co-ords, calc the center location
                x1 = pt1[0]
                x2 = pt2[0]
                y1 = pt1[1]
                y2 = pt2[1]
                centerx = x1 + ((x2 - x1) / 2)
                centery = y1 + ((y2 - y1) / 2)
                center = (centerx, centery)

                scaled = ((x1, y1, x2 - x1, y2 - y1), n)
                original_size_faces.append(scaled)
                # print scaled


#    cv.NamedWindow(WINDOW_NAME, 1)
#    cv.ShowImage(WINDOW_NAME, img)

#    if cv.WaitKey(5) == 27:
#        center = None
    return (center, original_size_faces)
Esempio n. 26
0
def find_squares_from_binary( gray ):
    """
    use contour search to find squares in binary image
    returns list of numpy arrays containing 4 points
    """
    squares = []
    storage = cv.CreateMemStorage(0)
    contours = cv.FindContours(gray, storage, cv.CV_RETR_TREE, cv.CV_CHAIN_APPROX_SIMPLE, (0,0))  
    storage = cv.CreateMemStorage(0)
    while contours:
        #approximate contour with accuracy proportional to the contour perimeter
        arclength = cv.ArcLength(contours)
        polygon = cv.ApproxPoly( contours, storage, cv.CV_POLY_APPROX_DP, arclength * 0.02, 0)
        if is_square(polygon):
            squares.append(polygon[0:4])
        contours = contours.h_next()

    return squares
Esempio n. 27
0
    def initialize(self, frame):
        # Initialize
        # log_file_name = "tracker_output.log"
        # log_file = file( log_file_name, 'a' )
        
        print  str(type(frame))
        print "resize to ::: " + str(cv.GetSize(frame)) + " " +  str(type(frame))
        (w, h) = cv.GetSize(frame)
#         gray = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 1)
        size = (w, h) #cv.GetSize(frame)#(300 , 300)
        self.thumbnail = cv.CreateImage(size, cv.IPL_DEPTH_8U, 3)
       
        self.grey_average_image = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
        self.grey_original_image = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
#         cv.CvtColor(display_image, gray, cv.CV_RGB2GRAY)
#         prev_image = gray
        
        # Greyscale image, thresholded to create the motion mask:
        self.grey_image = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
        
        
        
        # The RunningAvg() function requires a 32-bit or 64-bit image...
        self.running_average_image = cv.CreateImage(size, cv.IPL_DEPTH_32F, 3)
        
        # ...but the AbsDiff() function requires matching image depths:
        self.running_average_in_display_color_depth = cv.CloneImage(self.thumbnail)
        
        # RAM used by FindContours():
        self.mem_storage = cv.CreateMemStorage(0)
        
        # The difference between the running average and the current frame:
        self.difference = cv.CloneImage(self.thumbnail)
        
        self.target_count = 1
        self.last_target_count = 1
        self.last_target_change_t = 0.0
        self.k_or_guess = 1
        self.codebook = []
       
        self.last_frame_entity_list = []
        
        self.frame_count = 0
        
        # For toggling display:
        image_list = [ "camera", "difference", "threshold", "display", "faces" ]
        image_index = 3  # Index into image_list
    
    
        # Prep for text drawing:
        text_font = cv.InitFont(cv.CV_FONT_HERSHEY_COMPLEX, .5, .5, 0.0, 1, cv.CV_AA)
        text_coord = (5, 15)
        text_color = cv.CV_RGB(255, 255, 255)

        
        # Set this to the max number of targets to look for (passed to k-means):
        self.max_targets = 5
Esempio n. 28
0
def lines2():
    im = cv.LoadImage('roi_edges.jpg', cv.CV_LOAD_IMAGE_GRAYSCALE)
    pi = math.pi
    x = 0
    dst = cv.CreateImage(cv.GetSize(im), 8, 1)
    cv.Canny(im, dst, 200, 200)
    cv.Threshold(dst, dst, 100, 255, cv.CV_THRESH_BINARY)
    color_dst_standard = cv.CreateImage(cv.GetSize(im), 8, 3)
    cv.CvtColor(im, color_dst_standard,
                cv.CV_GRAY2BGR)  #Create output image in RGB to put red lines
    lines = cv.HoughLines2(dst, cv.CreateMemStorage(0), cv.CV_HOUGH_STANDARD,
                           1, pi / 100, 71, 0, 0)
    klsum = 0
    klaver = 0
    krsum = 0
    kraver = 0

    #global k
    #k=0
    for (rho, theta) in lines[:100]:
        kl = []
        kr = []
        a = math.cos(theta)
        b = math.sin(theta)
        x0 = a * rho
        y0 = b * rho
        pt1 = (cv.Round(x0 + 1000 * (-b)), cv.Round(y0 + 1000 * (a)))
        pt2 = (cv.Round(x0 - 1000 * (-b)), cv.Round(y0 - 1000 * (a)))
        k = ((y0 - 1000 * (a)) - (y0 + 1000 * (a))) / ((x0 - 1000 * (-b)) -
                                                       (x0 + 1000 * (-b)))

        if abs(k) < 0.4:
            pass
        elif k > 0:
            kr.append(k)
            len_kr = len(kr)
            for i in kr:
                krsum = krsum + i
                kraver = krsum / len_kr

                cv.Line(color_dst_standard, pt1, pt2, cv.CV_RGB(255, 0, 0), 2,
                        4)
        elif k < 0:
            kr.append(k)
            kl.append(k)
            len_kl = len(kl)
            for i in kl:
                klsum = klsum + i
                klaver = klsum / len_kl
                cv.Line(color_dst_standard, pt1, pt2, cv.CV_RGB(255, 0, 0), 2,
                        4)
        #print k
    #  cv.Line(color_dst_standard, pt1, pt2, cv.CV_RGB(255, 0, 0), 2, 4)
    cv.SaveImage('lane.jpg', color_dst_standard)
    print '左车道平均斜率:', klaver, '  右车道平均斜率:', kraver
    cv.ShowImage("Hough Standard", color_dst_standard)
    cv.WaitKey(0)
Esempio n. 29
0
 def find_rectangles(self,input_img):
     """ Find contours in the input image.
     input_img: Is a binary image
     """
     contours_img=cv.CreateMat(input_img.height, input_img.width, cv.CV_8UC1) # Image to draw the contours
     copied_img=cv.CreateMat(input_img.height, input_img.width, input_img.type) # Image to draw the contours
     cv.Copy(input_img, copied_img)
     contours = cv.FindContours(copied_img,cv.CreateMemStorage(),cv.CV_RETR_TREE,cv.CV_CHAIN_APPROX_SIMPLE)
     cv.DrawContours(contours_img,contours,255,0,10)
     return contours_img
    def OnPaint(self, evt):
        if not self.timer.IsRunning() :
            dc = wx.BufferedDC(wx.ClientDC(self), wx.NullBitmap, wx.BUFFER_VIRTUAL_AREA)
            dc.SetBackground(wx.Brush(wx.Colour(0, 0, 0)))
            return
            
        # Capture de l'image
        frame = cv.QueryFrame(CAMERA)
        cv.CvtColor(frame, frame, cv.CV_BGR2RGB)
        Img = wx.EmptyImage(frame.width, frame.height)
        Img.SetData(frame.tostring())
        self.bmp = wx.BitmapFromImage(Img)
        width, height = frame.width, frame.height
        
        # Détection des visages
        min_size = (20, 20)
        image_scale = 2
        haar_scale = 1.2
        min_neighbors = 2
        haar_flags = 0

        gray = cv.CreateImage((frame.width, frame.height), 8, 1)
        small_img = cv.CreateImage((cv.Round(frame.width / image_scale), cv.Round (frame.height / image_scale)), 8, 1)
        cv.CvtColor(frame, gray, cv.CV_BGR2GRAY)
        cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
        cv.EqualizeHist(small_img, small_img)
        
        listeVisages = cv.HaarDetectObjects(small_img, CASCADE, cv.CreateMemStorage(0), haar_scale, min_neighbors, haar_flags, min_size)

        # Affichage de l'image
        x, y = (0, 0)
        try:
            dc = wx.BufferedDC(wx.ClientDC(self), wx.NullBitmap, wx.BUFFER_VIRTUAL_AREA)
            try :
                dc.SetBackground(wx.Brush(wx.Colour(0, 0, 0)))
            except :
                pass
            dc.Clear()
            dc.DrawBitmap(self.bmp, x, y)
            
            # Dessin des rectangles des visages
            if listeVisages :
                for ((x, y, w, h), n) in listeVisages :
                    dc.SetBrush(wx.TRANSPARENT_BRUSH)
                    dc.SetPen(wx.Pen(wx.Colour(255, 0, 0), 2))
                    dc.DrawRectangle(x* image_scale, y* image_scale, w* image_scale, h* image_scale)
            
            self.listeVisages = listeVisages
            del dc
            del Img
            
        except TypeError:
            pass
        except wx.PyDeadObjectError:
            pass