def getDisparity(imgLeft, imgRight, method="BM"):
    gray_left = cv2.cvtColor(imgLeft, cv.CV_BGR2GRAY)
    gray_right = cv2.cvtColor(imgRight, cv.CV_BGR2GRAY)
    print gray_left.shape
    c, r = gray_left.shape
    if method == "BM":
        sbm = cv.CreateStereoBMState()
        disparity = cv.CreateMat(c, r, cv.CV_32F)
        sbm.SADWindowSize = 5
        sbm.preFilterType = 1
        sbm.preFilterSize = 5
        sbm.preFilterCap = 30
        sbm.minDisparity = 0
        sbm.numberOfDisparities = 16
        sbm.textureThreshold = 0
        sbm.uniquenessRatio = 0
        sbm.speckleRange = 2
        sbm.speckleWindowSize = 100

        gray_left = cv.fromarray(gray_left)
        gray_right = cv.fromarray(gray_right)

        cv.FindStereoCorrespondenceBM(gray_left, gray_right, disparity, sbm)
        disparity_visual = cv.CreateMat(c, r, cv.CV_8U)
        cv.Normalize(disparity, disparity_visual, 0, 255, cv.CV_MINMAX)
        disparity_visual = np.array(disparity_visual)

    elif method == "SGBM":
        sbm = cv2.StereoSGBM()
        sbm.SADWindowSize = 5
        #Matched block size. It must be an odd number >=1 . Normally, it should be somewhere in the 3..11 range.
        sbm.numberOfDisparities = 16
        #con valori piu alti tipo 112 viene il contorno nero
        sbm.preFilterCap = 1
        sbm.minDisparity = 0
        #con altri valori smongola
        sbm.uniquenessRatio = 7
        sbm.speckleWindowSize = 100
        sbm.speckleRange = 2
        sbm.disp12MaxDiff = 1
        sbm.fullDP = False
        #a True runna il full-scale two-pass dynamic programming algorithm

        disparity = sbm.compute(gray_left, gray_right)
        disparity_visual = cv2.normalize(disparity,
                                         alpha=0,
                                         beta=255,
                                         norm_type=cv2.cv.CV_MINMAX,
                                         dtype=cv2.cv.CV_8U)

    return disparity_visual
def getDisparity(imgLeft, imgRight, method="BM"):

    gray_left = cv2.cvtColor(imgLeft, cv.CV_BGR2GRAY)
    gray_right = cv2.cvtColor(imgRight, cv.CV_BGR2GRAY)
    print gray_left.shape
    c, r = gray_left.shape
    if method == "BM":
        sbm = cv.CreateStereoBMState()
        disparity = cv.CreateMat(c, r, cv.CV_32F)
        sbm.SADWindowSize = 9
        sbm.preFilterType = 1
        sbm.preFilterSize = 5
        sbm.preFilterCap = 61
        sbm.minDisparity = -39
        sbm.numberOfDisparities = 112
        sbm.textureThreshold = 507
        sbm.uniquenessRatio = 0
        sbm.speckleRange = 8
        sbm.speckleWindowSize = 0

        gray_left = cv.fromarray(gray_left)
        gray_right = cv.fromarray(gray_right)

        cv.FindStereoCorrespondenceBM(gray_left, gray_right, disparity, sbm)
        disparity_visual = cv.CreateMat(c, r, cv.CV_8U)
        cv.Normalize(disparity, disparity_visual, 0, 255, cv.CV_MINMAX)
        disparity_visual = np.array(disparity_visual)

    elif method == "SGBM":
        sbm = cv2.StereoSGBM()
        sbm.SADWindowSize = 9
        sbm.numberOfDisparities = 96
        sbm.preFilterCap = 63
        sbm.minDisparity = -21
        sbm.uniquenessRatio = 7
        sbm.speckleWindowSize = 0
        sbm.speckleRange = 8
        sbm.disp12MaxDiff = 1
        sbm.fullDP = False

        disparity = sbm.compute(gray_left, gray_right)
        disparity_visual = cv2.normalize(disparity,
                                         alpha=0,
                                         beta=255,
                                         norm_type=cv2.cv.CV_MINMAX,
                                         dtype=cv2.cv.CV_8U)

    return disparity_visual
Esempio n. 3
0
def stereo_depth_map(rectified_pair):
    c, r = rectified_pair[0].shape
    disparity = cv.CreateMat(c, r, cv.CV_32F)
    sbm = cv.CreateStereoBMState()
    sbm.SADWindowSize = SWS
    sbm.preFilterType = 1
    sbm.preFilterSize = PFS
    sbm.preFilterCap = PFC
    sbm.minDisparity = MDS
    sbm.numberOfDisparities = NOD
    sbm.textureThreshold = TTH
    sbm.uniquenessRatio= UR
    sbm.speckleRange = SR
    sbm.speckleWindowSize = SPWS
    dmLeft = cv.fromarray (rectified_pair[0])
    dmRight = cv.fromarray (rectified_pair[1])
    cv.FindStereoCorrespondenceBM(dmLeft, dmRight, disparity, sbm)
    disparity_grayscale = cv.CreateMat(c, r, cv.CV_8UC1)
    cv.Normalize(disparity, disparity_grayscale, 0, 255, cv2.NORM_MINMAX)

    disparity_grayscale = np.array(disparity_grayscale, dtype=np.uint8) #without UINT8 returns grayscale
    disparity_color = cv2.applyColorMap(disparity_grayscale, cv2.COLORMAP_JET)
    return disparity_color
Esempio n. 4
0
def stereo_depth_map(rectified_pair):
    print ('SWS='+str(SWS)+' PFS='+str(PFS)+' PFC='+str(PFC)+' MDS='+\
           str(MDS)+' NOD='+str(NOD)+' TTH='+str(TTH))
    print(' UR=' + str(UR) + ' SR=' + str(SR) + ' SPWS=' + str(SPWS))
    c, r = rectified_pair[0].shape
    disparity = cv.CreateMat(c, r, cv.CV_32F)
    sbm = cv.CreateStereoBMState()
    sbm.SADWindowSize = SWS
    sbm.preFilterType = 1
    sbm.preFilterSize = PFS
    sbm.preFilterCap = PFC
    sbm.minDisparity = MDS
    sbm.numberOfDisparities = NOD
    sbm.textureThreshold = TTH
    sbm.uniquenessRatio = UR
    sbm.speckleRange = SR
    sbm.speckleWindowSize = SPWS
    dmLeft = cv.fromarray(rectified_pair[0])
    dmRight = cv.fromarray(rectified_pair[1])
    cv.FindStereoCorrespondenceBM(dmLeft, dmRight, disparity, sbm)
    disparity_visual = cv.CreateMat(c, r, cv.CV_8U)
    cv.Normalize(disparity, disparity_visual, 0, 255, cv.CV_MINMAX)
    disparity_visual = np.array(disparity_visual)
    return disparity_visual