Esempio n. 1
0
def createClassifer(id_list: list):
    faces, labels = testGatherTrainingData(id_list)
    print("Total faces: ", len(faces))
    print("Total labels: ", len(labels), labels)
    face_recognizer = face.LBPHFaceRecognizer_create()
    face_recognizer.train(np.array(faces), np.array(labels))
    return face_recognizer
Esempio n. 2
0
def showVideo():

    url = "https://tianfeng-510finalproject.appspot.com/form"
    webbrowser.open_new_tab(url)

    haar_face_cascade = cv2.CascadeClassifier(
        'data/haarcascade_frontalface_alt.xml')
    recognizer = face.LBPHFaceRecognizer_create()
    recognizer.read("trainner.yml")
    lables = {"person_name": 1}
    with open('lables.pickle', 'rb') as f:
        og_lables = pickle.load(f)
        lables = {v: k for k, v in og_lables.items()}

    cap = cv2.VideoCapture(0)
    cap.set(3, 320)
    cap.set(4, 240)
    cv2.namedWindow('frame', cv2.WINDOW_NORMAL)
    cv2.resizeWindow('frame', (600, 600))

    while (True):

        ret, frame = cap.read()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        faces = haar_face_cascade.detectMultiScale(gray,
                                                   scaleFactor=1.1,
                                                   minNeighbors=5)
        for (x, y, w, h) in faces:
            # print(x , y, w, h)
            roi_gray = gray[y:y + h, x:x + w]
            roi_color = frame[y:y + h, x:x + w]

            id_, conf = recognizer.predict(roi_gray)
            if conf >= 45 and conf <= 85:
                name = lables[id_]
                cv2.putText(frame, name, (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1,
                            (255, 0, 0), 1, cv2.LINE_AA)

            img_item = "face/my-image.png"
            cv2.imwrite(img_item, roi_gray)

            color = (255, 0, 0)
            stroke = 1
            cv2.rectangle(frame, (x, y), (x + w, y + h), color, stroke)

            new_data = {"Name": str(lables[id_]), "X": int(x), "Y": int(y)}
            print(new_data)
            db.update(new_data)

        text = "Faces found:" + str(len(faces))
        cv2.putText(frame, text, (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
                    (255, 255, 255), 1)
        cv2.imshow('frame', frame)

        if cv2.waitKey(5) & 0xFF == ord('q'):
            break
    # When everything is done, release the capture
    cap.release()
    cv2.destroyAllWindows()
Esempio n. 3
0
def face_rec():
    names = ['BAO BAO ', 'BA BA BA ', 'Bei Bei', 'MMMMMMM']  # 标签对应的名字0,baobao,1,bbb,2,beibei....
    [x, y] = read_img("D:")  # 调读取函数,返回图像、和标签列表
    y = np.asarray(y, dtype=np.int32)  # 转为NUMPY的ARRAY

    # CV自带的三种算法,现用LBPH算法。此处有坑,坑的我差点放弃,原来叫createLBPHFaceRecognizer,为什么我下载的这模样
    # model=fc.EigenFaceRecognizer_create()
    # model = fc.FisherFaceRecognizer_create()
    model = fc.LBPHFaceRecognizer_create()

    # 训练,此处应把训练结果保存,再用到时直接读取结果,效率更高,xml?json?pickle?
    model.train(np.asarray(x), np.asarray(y))

    # 下面读取摄像头图像,用矩形标识检测到脸部和训练后结果比对,打印出对应标签所对应名字
    camera = cv2.VideoCapture(0)
    face_cascade = cv2.CascadeClassifier('D:\pythonweb\face_test/haarcascade_frontalface_default.xml')
    while True:
        read, img = camera.read()
        faces = face_cascade.detectMultiScale(img, 1.3, 5)
        for (x, y, w, h) in faces:
            img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            try:
                roi = cv2.resize(roi, (200, 200), interpolation=cv2.INTER_LINEAR)

                params = model.predict(roi)  # predict()函数做比对,返回一个元祖格式值 (标签,系数)。系数和算法有关,
                # 前2种算法值低于5000不可靠,LBPH低于50可靠,80-90不可靠,高于90纯蒙
                # 此处有文章可做,通过单位时间内检测到的系数平均值,可以得到更准确结果
                print(params)
                # 打印标签对应名字,如cvtopil的灰度问题解决,可cvtopil函数替换
                cv2.putText(img, names[params[0]], (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 2)
            except:
                continue
        cv2.imshow("abc", img)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cv2.destroyAllWindows()
import cv2
import cv2.face as fc

recongnizer = fc.LBPHFaceRecognizer_create()
recongnizer.read('FaceTrainer/trainer.yml')
cascadePath = 'Cascade/haarcascade_frontalface_default.xml'
faceCascades = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX

cam = cv2.VideoCapture(0)
minW = 0.1 * cam.get(3)
minH = 0.1 * cam.get(4)

id = 0

names = ['lhz', '哈哈哈']

while True:
    ret, img = cam.read()
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    faces = faceCascades.detectMultiScale(gray,
                                          scaleFactor=1.2,
                                          minNeighbors=5,
                                          minSize=(int(minW), int(minH)))

    for (x, y, w, h) in faces:

        # 比对数据
        id, confidence = recongnizer.predict(gray[y:y + h, x:x + w])
import multiprocessing
import numpy as np
from cv2 import face  # OpenCV

# My imports.
import extraction_model as exmodel
from sort_database.utils import EMOTIONS_5, EMOTIONS_8

# Start the script.
script_name = os.path.basename(__file__)  # The name of this script
print("\n{}: Beginning face recogniser tests...\n".format(script_name))
start = time.clock()  # Start of the speed test. clock() is most accurate.

fisherface = face.FisherFaceRecognizer_create()  # Fisherface classifier
eigenface = face.EigenFaceRecognizer_create()  # Eigenface classifier
lbph = face.LBPHFaceRecognizer_create()  # Local Binary Patterns classifier


def run_fisher_recognizer(X_train, y_train, X_test, y_test):
    """Train the fisherface classifier."""
    print("\n***> Training fisherface classifier")
    print("Size of the training set is {} images.".format(len(y_train)))

    fisherface.train(X_train, np.array(y_train))

    print("Predicting classification set.")
    cnt = 0
    correct = 0
    incorrect = 0
    for image in X_test:
        pred, conf = fisherface.predict(image)
Esempio n. 6
0
import cv2
from cv2 import face
import pickle
import numpy as np
from PIL import Image

# whereever the file is saved
# looking for the path of it
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# path of the images
image_dir = os.path.join(BASE_DIR, "images")

face_cascades = cv2.CascadeClassifier(
    "cascades/data/haarcascade_frontalface_alt2.xml")
# face recognizer:
recognizer = face.LBPHFaceRecognizer_create()

current_id = 0
label_ids = {}
y_labels = []
x_train = []

for root, dir, files in os.walk(image_dir):
    for file in files:
        if file.endswith("jpg") or file.endswith("png") or file.endswith(
                "jpeg"):
            path = os.path.join(root, file)
            label = os.path.basename(os.path.dirname(path)).replace(
                " ", "-").lower()
            #print(label, path)
            # add the label into label_ids dic if it's not there already