Esempio n. 1
0
def DetectEyes(imageCV, faceCascade, eyeCascade):
    minSize = (20, 20)
    imageScale = 2
    haarScale = 1.2
    minNeighbors = 2
    haarFlags = 0

    # Allocate the temporary images
    #gray = cv2.CreateImage((imageCV.width, image.height), 8, 1)
    #smallImage = cv.CreateImage((cv.Round(image.width / image_scale), cv2.Round (image.height / image_scale)), 8 ,1)

    # Convert color input image to grayscale
    cv2.cvtColor(image, gray, cv.CV_BGR2GRAY)

    # Scale input image for faster processing
    cv2.Resize(gray, smallImage, cv.CV_INTER_LINEAR)

    # Equalize the histogram
    cv2.EqualizeHist(smallImage, smallImage)

    # Detect the faces
    faces = cv2.HaarDetectObjects(smallImage, faceCascade,
                                  cv2.CreateMemStorage(0), haar_scale,
                                  min_neighbors, haar_flags, min_size)

    # If faces are found
    if faces:

        for ((x, y, w, h), n) in faces:
            # the input to cv.HaarDetectObjects was resized, so scale the
            # bounding box of each face and convert it to two CvPoints
            pt1 = (int(x * image_scale), int(y * image_scale))
            pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
            cv2.Rectangle(image, pt1, pt2, cv2.RGB(255, 0, 0), 3, 8, 0)
def DetectFace(image, faceCascade, returnImage=False):
    min_size = (20, 20)
    haar_scale = 1.1
    min_neighbors = 3
    haar_flags = 0

    # Equalize the histogram
    cv.EqualizeHist(image, image)

    # Detect the faces
    faces = cv.HaarDetectObjects(image, faceCascade, cv.CreateMemStorage(0),
                                 haar_scale, min_neighbors, haar_flags,
                                 min_size)

    # If faces are found
    if faces and returnImage:
        for ((x, y, w, h), n) in faces:
            # Convert bounding box to two CvPoints
            pt1 = (int(x), int(y))
            pt2 = (int(x + w), int(y + h))
            cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 5, 8, 0)

    if returnImage:
        return image
    else:
        return faces
def DetectFace(image, faceCascade, returnImage=False):
    # This function takes a grey scale cv image and finds
    # the patterns defined in the haarcascade function
    # modified from: http://www.lucaamore.com/?p=638

    #variables
    min_size = (20, 20)
    haar_scale = 1.1
    min_neighbors = 3
    haar_flags = 0

    # Equalize the histogram
    cv2.EqualizeHist(image, image)

    # Detect the faces
    faces = cv2.HaarDetectObjects(image, faceCascade, cv2.CreateMemStorage(0),
                                  haar_scale, min_neighbors, haar_flags,
                                  min_size)

    # If faces are found
    if faces and returnImage:
        for ((x, y, w, h), n) in faces:
            # Convert bounding box to two CvPoints
            pt1 = (int(x), int(y))
            pt2 = (int(x + w), int(y + h))
            cv2.Rectangle(image, pt1, pt2, cv2.RGB(255, 0, 0), 5, 8, 0)

    if returnImage:
        return image
    else:
        return faces
Esempio n. 4
0
 def detect(self, obj, event):
     # First, reset image, in case of previous detections:
     active_handle = self.get_active('Media')
     media = self.dbstate.db.get_media_from_handle(active_handle)
     self.load_image(media)
     min_face_size = (50, 50)  # FIXME: get from setting
     self.cv_image = cv2.LoadImage(self.full_path,
                                   cv2.CV_LOAD_IMAGE_GRAYSCALE)
     o_width, o_height = self.cv_image.width, self.cv_image.height
     cv2.EqualizeHist(self.cv_image, self.cv_image)
     cascade = cv2.Load(HAARCASCADE_PATH)
     faces = cv2.HaarDetectObjects(self.cv_image, cascade,
                                   cv2.CreateMemStorage(0), 1.2, 2,
                                   cv2.CV_HAAR_DO_CANNY_PRUNING,
                                   min_face_size)
     references = self.find_references()
     rects = []
     o_width, o_height = [
         float(t) for t in (self.cv_image.width, self.cv_image.height)
     ]
     for ((x, y, width, height), neighbors) in faces:
         # percentages:
         rects.append((x / o_width, y / o_height, width / o_width,
                       height / o_height))
     self.draw_rectangles(rects, references)
Esempio n. 5
0
    def detect_no_draw(self, img):
        # allocate temporary images
        gray = cv.CreateImage((img.width, img.height), 8, 1)
        small_img = cv.CreateImage((cv.Round(img.width / self.image_scale),
                                    cv.Round(img.height / self.image_scale)),
                                   8, 1)

        # convert color input image to grayscale
        cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

        # scale input image for faster processing
        cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
        cv.EqualizeHist(small_img, small_img)

        if self.cascade:
            t = cv.GetTickCount()
            faces = cv.HaarDetectObjects(small_img, self.cascade,
                                         cv.CreateMemStorage(0),
                                         self.haar_scale, self.min_neighbors,
                                         self.haar_flags, self.min_size)
            t = cv.GetTickCount() - t
        if faces:
            return True
        else:
            return False
Esempio n. 6
0
def DetectFace(image, faceCascade):
    #modified from: http://www.lucaamore.com/?p=638

    min_size = (20, 20)
    image_scale = 1
    haar_scale = 1.1
    min_neighbors = 3
    haar_flags = 0

    # Allocate the temporary images
    smallImage = cv2.CreateImage((cv2.Round(
        image.width / image_scale), cv2.Round(image.height / image_scale)), 8,
                                 1)

    # Scale input image for faster processing
    cv2.Resize(image, smallImage, cv2.CV_INTER_LINEAR)

    # Equalize the histogram
    cv2.EqualizeHist(smallImage, smallImage)

    # Detect the faces
    faces = cv2.HaarDetectObjects(smallImage, faceCascade,
                                  cv2.CreateMemStorage(0), haar_scale,
                                  min_neighbors, haar_flags, min_size)

    # If faces are found
    if faces:
        for ((x, y, w, h), n) in faces:
            # the input to cv.HaarDetectObjects was resized, so scale the
            # bounding box of each face and convert it to two CvPoints
            pt1 = (int(x * image_scale), int(y * image_scale))
            pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
            cv2.Rectangle(image, pt1, pt2, cv2.RGB(255, 0, 0), 5, 8, 0)

    return image
Esempio n. 7
0
    def get_faces(self, image):
        """
		Given an opencv image, return a ((x,y,w,h), certainty) tuple for each face
		detected.
		"""

        # Convert the image to grayscale and normalise
        cv.CvtColor(image, self.gray, cv.CV_BGR2GRAY)
        cv.EqualizeHist(self.gray, self.gray)

        # Detect faces
        return cv.HaarDetectObjects(self.gray,
                                    self.cascade,
                                    self.storage,
                                    scale_factor=1.3,
                                    min_neighbors=2,
                                    flags=cv.CV_HAAR_DO_CANNY_PRUNING,
                                    min_size=(40, 40))
Esempio n. 8
0
def get_hands(image):
    """ Returns the hand as white on black. Uses value in HSV to determine
        hands."""
    size = cv2.GetSize(image)
    hsv = cv2.CreateImage(size, 8, 3)
    hue = cv2.CreateImage(size, 8, 1)
    sat = cv2.CreateImage(size, 8, 1)
    val = cv2.CreateImage(size, 8, 1)
    hands = cv2.CreateImage(size, 8, 1)
    cv2.Cv2tColor(image, hsv, cv2.CV2_BGR2HSV)
    cv2.Split(hsv, hue, sat, val, None)

    cv2.ShowImage('Live', image)
    cv2.ShowImage('Hue', hue)
    cv2.ShowImage('Saturation', sat)

    cv2.Threshold(
        hue, hue, 10, 255,
        cv2.CV2_THRESH_TOZERO)  #set to 0 if <= 10, otherwise leave as is
    cv2.Threshold(
        hue, hue, 244, 255,
        cv2.CV2_THRESH_TOZERO_INV)  #set to 0 if > 244, otherwise leave as is
    cv2.Threshold(hue, hue, 0, 255,
                  cv2.CV2_THRESH_BINARY_INV)  #set to 255 if = 0, otherwise 0
    cv2.Threshold(
        sat, sat, 64, 255,
        cv2.CV2_THRESH_TOZERO)  #set to 0 if <= 64, otherwise leave as is
    cv2.EqualizeHist(sat, sat)

    cv2.Threshold(sat, sat, 64, 255,
                  cv2.CV2_THRESH_BINARY)  #set to 0 if <= 64, otherwise 255

    cv2.ShowImage('Saturation threshold', sat)
    cv2.ShowImage('Hue threshold', hue)

    cv2.Mul(hue, sat, hands)

    #smooth + threshold to filter noise
    #    cv2.Smooth(hands, hands, smoothtype=cv2.CV2_GAUSSIAN, param1=13, param2=13)
    #    cv2.Threshold(hands, hands, 200, 255, cv2.CV2_THRESH_BINARY)

    cv2.ShowImage('Hands', hands)

    return hands
Esempio n. 9
0
    def detect_and_draw(self, img):

        # allocate temporary images
        gray = cv.CreateImage((img.width, img.height), 8, 1)
        small_img = cv.CreateImage((cv.Round(img.width / self.image_scale),
                                    cv.Round(img.height / self.image_scale)),
                                   8, 1)

        # convert color input image to grayscale
        cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

        # scale input image for faster processing
        cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
        cv.EqualizeHist(small_img, small_img)

        if self.cascade:
            t = cv.GetTickCount()
            faces = cv.HaarDetectObjects(small_img, self.cascade,
                                         cv.CreateMemStorage(0),
                                         self.haar_scale, self.min_neighbors,
                                         self.haar_flags, self.min_size)
            t = cv.GetTickCount() - t
            #		print "time taken for detection = %gms" % (t/(cv.GetTickFrequency()*1000.))
            if faces:
                face_found = True

                for ((x, y, w, h), n) in faces:
                    # the input to cv.HaarDetectObjects was resized, so scale the
                    # bounding box of each face and convert it to two CvPoints
                    pt1 = (int(x * self.image_scale),
                           int(y * self.image_scale))
                    pt2 = (int((x + w) * self.image_scale),
                           int((y + h) * self.image_scale))
                    cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
            else:
                face_found = False

        cv.ShowImage("video", img)
        return face_found
Esempio n. 10
0
    def detectFace(self, cam_img, faceCascade, eyeCascade, mouthCascade):  # cam_img should be cv2.cv.iplcam_img
        min_size = (20, 20)
        image_scale = 2
        haar_scale = 1.2
        min_neighbors = 2
        haar_flags = 0
        image_width = int(cam_img.get(cv.CV_CAP_PROP_FRAME_WIDTH))
        image_height = int(cam_img.get(cv.CV_CAP_PROP_FRAME_HEIGHT))
        # Allocate the temporary images
        gray = cv.CreateImage((image_width, image_height), 8, 1)  # tuple as the first arg
        smallImage = cv.CreateImage((cv.Round(image_width / image_scale), cv.Round(image_height / image_scale)), 8, 1)

        (ok, img) = cam_img.read()
        # print 'gray is of ',type(gray) >>> gray is of  <type 'cv2.cv.iplimage'>
        # print type(smallImage)  >>> <type 'cv2.cv.iplimage'>
        # print type(image) >>> <type 'cv2.VideoCapture'>
        # print type(img) >>> <type 'numpy.ndarray'>

        # convert numpy.ndarray to iplimage
        ipl_img = cv2.cv.CreateImageHeader((img.shape[1], img.shape[0]), cv.IPL_DEPTH_8U, 3)
        cv2.cv.SetData(ipl_img, img.tostring(), img.dtype.itemsize * 3 * img.shape[1])

        # Convert color input image to grayscale
        cv.CvtColor(ipl_img, gray, cv.CV_BGR2GRAY)

        # Scale input image for faster processing
        cv.Resize(gray, smallImage, cv.CV_INTER_LINEAR)

        # Equalize the histogram
        cv.EqualizeHist(smallImage, smallImage)

        # Detect the faces
        faces = cv.HaarDetectObjects(smallImage, faceCascade, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)
        # => The function returns a list of tuples, (rect, neighbors) , where rect is a CvRect specifying the object’s extents and neighbors is a number of neighbors.
        # => CvRect cvRect(int x, int y, int width, int height)
        # If faces are found
        if faces:
            face = faces[0]
            self.faceX = face[0][0]
            self.faceY = face[0][1]

            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(ipl_img, pt1, pt2, cv.RGB(0, 0, 255), 3, 8, 0)
                # face_region = cv.GetSubRect(ipl_img,(x,int(y + (h/4)),w,int(h/2)))

            cv.SetImageROI(ipl_img, (pt1[0],
                                     pt1[1],
                                     pt2[0] - pt1[0],
                                     int((pt2[1] - pt1[1]) * 0.7)))

            eyes = cv.HaarDetectObjects(ipl_img, eyeCascade,
                                        cv.CreateMemStorage(0),
                                        haar_scale, min_neighbors,
                                        haar_flags, (15, 15))

            if eyes:
                # For each eye found
                for eye in eyes:
                    # Draw a rectangle around the eye
                    cv.Rectangle(ipl_img,  # image
                                 (eye[0][0],  # vertex pt1
                                  eye[0][1]),
                                 (eye[0][0] + eye[0][2],  # vertex pt2 opposite to pt1
                                  eye[0][1] + eye[0][3]),
                                 cv.RGB(255, 0, 0), 1, 4, 0)  # color,thickness,lineType(8,4,cv.CV_AA),shift

        cv.ResetImageROI(ipl_img)

        return ipl_img
import cv2 as cv

img = cv.LoadImage("friend1.jpg")

image_size = cv.GetSize(img)  #获取图片的大小
greyscale = cv.CreateImage(image_size, 8, 1)  #建立一个相同大小的灰度图像
cv.CvtColor(img, greyscale, cv.CV_BGR2GRAY)  #将获取的彩色图像,转换成灰度图像
storage = cv.CreateMemStorage(0)  #创建一个内存空间,人脸检测是要利用,具体作用不清楚

cv.EqualizeHist(greyscale, greyscale)  #将灰度图像直方图均衡化,貌似可以使灰度图像信息量减少,加快检测速度
# detect objects
cascade = cv.Load('haarcascade_frontalface_alt2.xml')  #加载Intel公司的训练库

#检测图片中的人脸,并返回一个包含了人脸信息的对象faces
faces = cv.HaarDetectObjects(greyscale, cascade, storage, 1.2, 2,
                             cv.CV_HAAR_DO_CANNY_PRUNING, (50, 50))

#获得人脸所在位置的数据
j = 0  #记录个数
for (x, y, w, h), n in faces:
    j += 1
    cv.SetImageROI(img, (x, y, w, h))  #获取头像的区域
    cv.SaveImage("face" + str(j) + ".jpg", img)
    #保存下来
Esempio n. 12
0
    if frame.origin == cv.IPL_ORIGIN_TL:
        cv.Flip(frame, frame, -1)

    # Our operations on the frame come here
    gray = cv.CreateImage((frame.width, frame.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        frame.width / image_scale), cv.Round(frame.height / image_scale)), 8,
                               1)

    # convert color input image to grayscale
    cv.CvtColor(frame, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    midFace = None

    if (cascade):
        t = cv.GetTickCount()
        # HaarDetectObjects takes 0.02s
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        if faces:
            lights(50 if len(faces) == 0 else 0, 50 if len(faces) > 0 else 0,
                   0, 50)

            for ((x, y, w, h), n) in faces: