from facial_emotion_recognition import EmotionRecognition import cv2 import cv2 er = EmotionRecognition(device='gpu') cam = cv2.Videocapture(0) while True: success, frame = cam.read() frame = er.recognise_emotion(frame, return_type='BGR') cv2.imshow('frame', frame) key = cv2.waitKey(1) if key == 27: break cam.release() cv2.destroyAllWindows
import numpy as np import cv2 start = 'true' cap = cv2.Videocapture(0) while (true): ret, frame = cap.read() if ret == true: gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if start == 'true': start = 'false' current = gray a = current[:, 0, 0].size b = current[0, :, 0].size x = np.arange(0, a, 1) y = np.arange(0, b, 1) delay = zeros[a, b] for i1 in x: for i1 in y: if current[i1, i2] < gray[i1, i2]: current[i1, i2] += 1 if frame[i1, i2, 2] > 180 and farme[i1, i2, 1] < 50 and frame[i1, i2, 0] < 50: current[i1, i2] = 0 cv2.imshow('frame', current) if cv2.waitkey(1) & 0xFF == ord('q'):
def monitor(self): success, image = self.cap.read() if not self.cap.isOpened(): self.cap = cv2.Videocapture(self.streamAddr) success, image = self.cap.read() if image != None: image_copy = image.copy() image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if success: self._cnt += 1 if self._cnt == 10: self._handler.baseImg.append(image_copy) self._handler.add_diff_value(image_copy) # self._handler.add_candidate_img(image_copy) # cv2.rectangle(image, (480, 360), (1440, 900), (255, 0, 0)) show_img = QImage(image.data, image.shape[1], image.shape[0], QImage.Format_RGB888) photo = QPixmap.fromImage(show_img) self._images.append(photo) n = len(self._images) if n >= 9: tmp = self._images[n - 9:n] # 优化缓存qpixmap的list del self._images self._images = tmp if len(self._images) >= 9: flag, self._abnormal_rois, self._draw_index = self._handler.hasAbnormal( ) if flag or self._is_real_normal: if self._cnt_flag < 8: self._handler.check_bg(image_copy) self._is_real_normal = True self._cnt_flag += 1 else: self._is_real_normal = False print "现在可能有异常了,前面的处理完了没--" ab_pixmap = self._images[4] updated_candidate = self._handler.img_to_candidate() self._cnt_flag = 0 if self._step2_processed: # second process finish print "可以处理新的数据了--------" if self._handler.candidate_valid(): self._step2_processed = False if updated_candidate: self._handler.saveImg(self._cnt) self._buffers[0] = POJO( ab_pixmap, self._handler.get_candidate()) self._notify_event.set() else: print "没有被判定可用的图像--" else: print "还没处理完,你再等会儿----" utils.set_label_pic(self._window.video, photo) if self._updated_abnormal_pic: self._updated_abnormal_pic = False self.update_show() else: self._warning_timer.stop() else: self.cap.release()
import cv2 cap = cv2.Videocapture(r'C:\Users\ravillalavanya\Downloads\vtest.avi') #videos are just a squences of images #so,we will add while loop to capture the frame continuously facecascade = cv2.cascadeclassifier(r"C:\Users\ravillalavanya\Downloads\haarcascade_fullbody.xml") while True: success, frame = cap.read() #frame variable will capture the video & success variable will tell us whether it was captured success are not imgGray = cv2.cvtcolor(frame, cv2.COLOR_BGR2GRAY) faces = facecascade.detectMultiscale(imgGray,1.1, 4) for (x, y, w, h) in faces: cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 0, 255), 2) cv2.imshow("video", frame) if cv2.waitkey(1) == ord('q'): #This adds a Delay and looks for the Key press inorder to break the loop break cap.release() #Release the resources after recording cv2.destroyAllWindows()
strTime = datetime.datetime.now().strftime("%H:%M:%S") speak(f" the time is {strTime}") print("the time is " + strTime) elif 'whats the temperature' in query: res = app.query(query) speak(next(res.results).text) elif 'Calculater' in query: speak("what should i calculatre?") gh = takecommand().lower() res = app.query(gh) speak(next(res.results).text) elif "open camera" in query: nar = cv2.Videocapture(0) while True: cv2.inshow('camera,img') k = cv2.waitkey(58) if k == 27: break nar.release() cv2.destroyAllwindows() elif "ip address" in query: ip = get("https://api.ipify.org").text speak(f"your IP address is {ip}") print(f"your IP address is {ip} ") elif "take screenshot" in query or "take a screenshot" in query: speak("sir, please tell me the name for this screenshot file")
import argparse, datetime import imutils import time import cv2 ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", help="path to the video file") ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area") args = vars(ap.parse_args()) if args.get("video", None) is None: camera = cv2.VideoCapture(0) time.sleep(0.25) else: camera = cv2.Videocapture(args["video"]) firstFrame = None while True: (grabbed, frame) = camera.read() text = "Unoccupied" b = 0 if not grabbed: break frame = imutils.resize(frame, width=500) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (21, 21), 0) if firstFrame is None: firstFrame = gray