Esempio n. 1
0
def image_segmentation(gray):
    """
    :param gray: grayscale image
    :return: components, processed grayscale image
    """
    gray = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,
                                ADAPTIVE_THRESHOLD_KERNEL_SIZE, ADAPTIVE_THRESHOLD_C)
    gray = cv2.medianBlur(gray, 3)
    gray = erode_dilate(gray)

    _, labeled_img = cv2.connectedComponentsWithAlgorithm(gray, 8, cv2.CV_32S, cv2.CCL_GRANA)
    labels = np.unique(labeled_img)
    labels = labels[labels != 0]
    intermediate_global_mask = np.zeros_like(labeled_img, dtype=np.uint8)
    for label in labels:
        mask = np.zeros_like(labeled_img, dtype=np.uint8)
        mask[labeled_img == label] = 255

        # Compute the convex hull
        if get_opencv_major_version(cv2.__version__) in ['2', '3']:
            mask, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        else:
            contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

        hull = []
        for cnt in contours:
            hull.append(cv2.convexHull(cnt, False))
        hull_mask = np.zeros((mask.shape[0], mask.shape[1]), dtype=np.uint8)
        for i in range(len(contours)):
            hull_mask = cv2.drawContours(hull_mask, hull, i, 255, -1, 8)

        intermediate_global_mask = np.clip(intermediate_global_mask + hull_mask, 0, 255)
    return connected_components_segmentation(intermediate_global_mask), gray
Esempio n. 2
0
def connected_components_segmentation(intermediate_global_mask):
    """
    :param intermediate_global_mask: black and white image
    :return: components
    """
    _, labeled_img = cv2.connectedComponentsWithAlgorithm(
        intermediate_global_mask, 8, cv2.CV_32S, cv2.CCL_GRANA)
    labels = np.unique(labeled_img)
    labels = labels[labels != 0]

    components = []

    for label in labels:
        mask = np.zeros_like(labeled_img, dtype=np.uint8)
        mask[labeled_img == label] = 255

        # Compute the convex hull
        if get_opencv_major_version(cv2.__version__) in ['2', '3']:
            mask, contours, _ = cv2.findContours(mask, cv2.RETR_TREE,
                                                 cv2.CHAIN_APPROX_SIMPLE)
        else:
            contours, _ = cv2.findContours(mask, cv2.RETR_TREE,
                                           cv2.CHAIN_APPROX_SIMPLE)

        hull = []
        for cnt in contours:
            hull.append(cv2.convexHull(cnt, False))
        hull_mask = np.zeros((mask.shape[0], mask.shape[1]), dtype=np.uint8)
        for i in range(len(contours)):
            hull_mask = cv2.drawContours(hull_mask, hull, i, 255, -1, 8)

        single_component, flag = draw_border_for_picture_parts(hull_mask)

        _, connected_component, stats, _ = cv2.connectedComponentsWithStatsWithAlgorithm(
            single_component, 8, cv2.CV_32S, cv2.CCL_GRANA)
        valid_labels = np.argwhere(
            stats[:, cv2.CC_STAT_AREA] >= LABEL_AREA_THRESHOLD)
        if valid_labels[0] == 0:
            valid_labels = valid_labels[1:]
        for valid_label in valid_labels:
            component = Component(valid_label, connected_component,
                                  stats[valid_label], flag)
            components.append(component)

    components.sort(key=lambda x: x.area, reverse=True)
    return components
Esempio n. 3
0
def image_segmentation(img):
    kernel = np.ones((5, 5), np.uint8)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                   cv2.THRESH_BINARY, 13,
                                   3)  # 11,2 at the beginning
    # cv2.imshow("thresh", thresh)
    medianBlur = cv2.medianBlur(thresh, 3)
    # cv2.imshow("medianBlur", medianBlur)
    post_proc = erosion_dilation(medianBlur)
    # cv2.imshow("post_proc", post_proc)

    num_labels, labels_im = cv2.connectedComponentsWithAlgorithm(
        post_proc, connectivity=8, ltype=cv2.CV_32S, ccltype=cv2.CCL_GRANA)
    labeled_image = draw_components(labels_im)
    # cv2.imshow("CCL", labeled_image)

    return labeled_image
Esempio n. 4
0
def eval_f(fp):
    import warnings
    warnings.filterwarnings("ignore")
    # gt
    if '2015' in args.dataset:
        mask_gt = cv2.imread(maskp[fp], 0)
        flow_gt = read_flow(maskp[fp].replace('obj_map',
                                              'flow_occ')).astype(np.float32)
        validmask = flow_gt[:, :, -1] == 1
        bgmask_gt = np.logical_and(validmask, mask_gt == 0).astype(float)
    else:
        bgmask_gt = cv2.imread(maskp[fp], 0) > 0
        shape = bgmask_gt.shape[:2]
        validmask = np.ones(shape).astype(bool)
    shape = bgmask_gt.shape[:2]

    # pred
    flowpath = flow_paths[fp]
    # KITTI
    if '2015' in args.dataset:
        idnum = int(flowpath.split('/')[-1].split('_')[-2])
        if args.method == 'ours':
            maskp_pred = '%s/%s/pm-%06d_10.pfm' % (args.path, args.dataset,
                                                   idnum)
            mask_pred = readPFM(maskp_pred)[0].astype(int)
            bgmask_pred = mask_pred == 0
        elif args.method == 'detectron2':
            maskp_pred = '/data/gengshay/code/moseg/moseg-detectron2/%06d.png' % idnum
            mask_pred = cv2.imread(maskp_pred, 0)
            bgmask_pred = mask_pred == 0
        elif args.method == 'mrflowss':
            bgmask_pred = np.load(
                '/home/gengshay/code/SF/mrflow/semantic_rigidity_cvpr2017/output_kitti_smodel/%06d_10.npy'
                % idnum)
            bgmask_pred = cv2.resize(bgmask_pred.astype(float),
                                     shape[::-1]).astype(bool)
        elif args.method == 'mrflowsk':
            bgmask_pred = cv2.imread(
                '/home/gengshay/code/SF/mrflow/semantic_rigidity_cvpr2017/output_kitti_kmodel/%06d_10.png'
                % idnum, 0).astype(bool)
        elif args.method == 'u2net':
            bgmask_pred = cv2.imread(
                '/data/gengshay/code/U-2-Net/test_data/u2net_results/%06d_10.png'
                % idnum, 0) < 128
        elif args.method == 'rtn':
            bgmask_pred = ~cv2.imread(
                '/data/gengshay/code/learningrigidity_mod/output_kitti/%06d_10.png'
                % idnum, 0).astype(bool)
        elif args.method == 'fusionseg':
            bgmask_pred = ~np.load(
                '/data/gengshay/code/fusionseg/python/kitti/results_liu/joint_davis_val/%06d_10_mask.npy'
                % idnum).astype(bool)
        elif args.method == 'fusionsegm':
            bgmask_pred = ~np.load(
                '/data/gengshay/code/fusionseg/python/kitti/results_liu/motion/%06d_10_mask.npy'
                % idnum).astype(bool)
        elif args.method == 'cosnet':
            bgmask_pred = cv2.resize(
                cv2.imread(
                    '/data/gengshay/code/COSNet/result/test/davis_iteration_conf/Results/kitti/%06d_10.png'
                    % idnum, 0), shape[::-1]) < 128
        elif args.method == 'matnet':
            bgmask_pred = cv2.imread(
                '/data/gengshay/code/MATNet/output/kitti_liu/%06d_10.png' %
                idnum, 0) < 128
        elif args.method == 'cc':
            bgmask_pred = cv2.resize(
                np.load('/data/gengshay/code/cc/output/mask-joint/%03d.npy' %
                        idnum)[0], shape[::-1]) == 1
        elif args.method == 'ccm':
            bgmask_pred = cv2.resize(
                np.load('/data/gengshay/code/cc/output/mask-motion/%03d.npy' %
                        idnum)[0], shape[::-1]) == 1
        elif args.method == 'angle':
            maskp_pred = '%s/%s/pm-%06d_10.pfm' % (args.path, args.dataset,
                                                   idnum)
            mask_pred = readPFM(maskp_pred)[0].astype(int)
            bgmask_pred = mask_pred == 0
        else:
            exit()

    # Sintel
    else:
        passname = flowpath.split('/')[-1].split('_')[-4]
        seqname1 = flowpath.split('/')[-1].split('_')[-3]
        seqname2 = flowpath.split('/')[-1].split('_')[-2]
        framename = int(flowpath.split('/')[-1].split('_')[-1].split('.')[0])
        if args.method == 'ours':
            maskp_pred = '%s/%s/pm-Sintel_%s_%s_%s_%02d.pfm' % (
                args.path, args.dataset, passname, seqname1, seqname2,
                framename)
            mask_pred = readPFM(maskp_pred)[
                0]  # label map in {1,...N} given N rigid body predictions
            bgmask_pred = mask_pred == 0
        elif args.method == 'detectron2':
            maskp_pred = '/data/gengshay/code/moseg/smoseg-detectron2/Sintel_%s_%s_%s_%02d.png' % (
                passname, seqname1, seqname2, framename)
            mask_pred = cv2.imread(maskp_pred, 0)
            bgmask_pred = mask_pred == 0
        elif args.method == 'mrflowss':
            bgmask_pred = np.load(
                '/home/gengshay/code/SF/mrflow/semantic_rigidity_cvpr2017/output_sintel_smodel/Sintel_%s_%s_%s_%02d.npy'
                % (passname, seqname1, seqname2, framename)).astype(bool)
        elif args.method == 'mrflowsk':
            bgmask_pred = cv2.imread(
                '/home/gengshay/code/SF/mrflow/semantic_rigidity_cvpr2017/output_sintel_kmodel/Sintel_%s_%s_%s_%02d.png'
                % (passname, seqname1, seqname2, framename), 0).astype(bool)
        elif args.method == 'u2net':
            bgmask_pred = cv2.imread(
                '/data/gengshay/code/U-2-Net/test_data/u2net_results_sintel/Sintel_%s_%s_%s_%02d.png'
                % (passname, seqname1, seqname2, framename), 0) < 128
        elif args.method == 'rtn':
            bgmask_pred = ~cv2.imread(
                '/data/gengshay/code/learningrigidity_mod/output_sintel/Sintel_%s_%s_%s_%02d.png'
                % (passname, seqname1, seqname2, framename), 0).astype(bool)
        elif args.method == 'fusionseg':
            bgmask_pred = ~np.load(
                '/data/gengshay/code/fusionseg/python/sintel/results/joint_davis_val/Sintel_%s_%s_%s_%02d_mask.npy'
                % (passname, seqname1, seqname2, framename)).astype(bool)
        elif args.method == 'fusionsegm':
            bgmask_pred = ~np.load(
                '/data/gengshay/code/fusionseg/python/sintel/results/motion/Sintel_%s_%s_%s_%02d_mask.npy'
                % (passname, seqname1, seqname2, framename)).astype(bool)
        elif args.method == 'cosnet':
            bgmask_pred = cv2.resize(
                cv2.imread(
                    '/data/gengshay/code/COSNet/result/test/davis_iteration_conf/Results/sintel/Sintel_%s_%s_%s_%02d.png'
                    % (passname, seqname1, seqname2, framename), 0),
                shape[::-1]) < 128
        elif args.method == 'matnet':
            bgmask_pred = cv2.imread(
                '/data/gengshay/code/MATNet/output/sintel/Sintel_%s_%s_%s_%02d.png'
                % (passname, seqname1, seqname2, framename), 0) < 128
        elif args.method == 'angle':
            maskp_pred = '%s/%s/pm-Sintel_%s_%s_%s_%02d.pfm' % (
                args.path, args.dataset, passname, seqname1, seqname2,
                framename)
            mask_pred = readPFM(maskp_pred)[0]
            bgmask_pred = mask_pred == 0
        else:
            exit()

    if args.method != 'ours' and args.method != 'detectron2':
        _, mask_pred = cv2.connectedComponentsWithAlgorithm(
            (1 - bgmask_pred.astype(np.uint8)),
            connectivity=8,
            ltype=cv2.CV_16U,
            ccltype=cv2.CCL_WU)

    # bg-iou
    try:
        bgiou = np.logical_and(
            bgmask_gt.astype(bool)[validmask],
            bgmask_pred[validmask]).sum() / np.logical_or(
                bgmask_gt.astype(bool)[validmask],
                bgmask_pred[validmask]).sum()
    except:
        pdb.set_trace()

    # obj-F (penalizes false positive)
    # defined in https://arxiv.org/abs/1902.03715 Sec.4
    # F=2PR/P+R => 2/(1/P+1/R)
    # since P = sum(|c and g|) / sum(|c|) and R = sum(|c and g|) / sum(|g|),
    #    where  c is prediction and g is GT
    # 1/P+1/R = [sum(|c|) + sum(|g|)] / sum(|c and g|)
    # therefore F = 2*sum(|c and g|) / [sum(|c|) +  sum(|g|)]
    if '2015' in args.dataset:
        gtlist = list(set(mask_gt.flatten()))
        M = len(gtlist) - 1
        imatrix = np.zeros((M, mask_pred.max()))
        fmatrix = np.zeros((M, mask_pred.max()))
        for i in range(M):  # for all bg instances
            objx_mask_gt = mask_gt == gtlist[i + 1]
            for j in range(mask_pred.max()):
                objx_mask_pred = mask_pred == j + 1
                imatrix[i, j] = float(
                    np.logical_and(objx_mask_gt,
                                   objx_mask_pred)[validmask].sum())
                fmatrix[i,
                        j] = imatrix[i,
                                     j] / (objx_mask_gt[validmask].sum() +
                                           objx_mask_pred[validmask].sum()) * 2
        ridx, cidx = scipy.optimize.linear_sum_assignment(1 - fmatrix)
        objf = imatrix[ridx, cidx].sum() / ((mask_pred > 0)[validmask].sum() +
                                            (mask_gt > 0)[validmask].sum()) * 2
    else:
        objf = 0.

    return bgiou, objf
Esempio n. 5
0
A = cv.imread("%s/%s" % (pwd, filename), cv.IMREAD_GRAYSCALE)
B = cv.threshold(A, thresh, 255, cv.THRESH_BINARY_INV)[1]
X = np.ones((ysize, np.shape(B)[1]))
C = cv.morphologyEx(B, cv.MORPH_CLOSE, X)
N, D = cv.connectedComponents(C)
k = 0
for i in range(1, N):
    (H, W) = np.where(D == i)
    F = B[min(H):max(H) + 1, :]
    ARef = A[min(H):max(H) + 1, :]
    base = imgProc_util.getBase(ARef)
    X2 = np.ones((ysize, xsize))
    C2 = cv.morphologyEx(F, cv.MORPH_DILATE, X2)
    C2 = cv.rotate(C2, cv.ROTATE_90_CLOCKWISE)
    N2, D2 = cv.connectedComponentsWithAlgorithm(C2,
                                                 8,
                                                 cv.CV_16U,
                                                 ccltype=cv.CCL_WU)
    D2 = cv.rotate(D2, cv.ROTATE_90_COUNTERCLOCKWISE)
    for j in range(1, N2):
        (H2, W2) = np.where(D2 == j)
        F2 = F[:, min(W2):max(W2) + 1]
        ARef2 = ARef[:, min(W2):max(W2) + 1]
        (H2, W2) = np.where(F2 != 0)
        final = ARef2[:, min(W2):max(W2) + 1]
        filepath = "%s/%s/w%03d_%03d.png" % (pwd, dirname, k, base)
        k = k + 1
        cv.imwrite(filepath, final)

print(
    "Segmentation done. Check the WordSegmentResult folder for proper result, then excecute \"paragraph.py\""
)
Esempio n. 6
0
        return self._fields[name]

frames=[]
for i,path in enumerate(sorted(glob.glob('%s/pm*'%args.datapath))):
    print(path)
    pred =  readPFM(path)[0]
    center_img = cv2.imread(path.replace('pm', 'mvis').replace('.pfm', '.jpg'))
    img = cv2.imread('%s/%s.png'%(args.imgpath,path.split('/')[-1].split('pm-')[1].split('.pfm')[0]))
    if img is None:
        img = cv2.imread('%s/%s.jpg'%(args.imgpath,path.split('/')[-1].split('pm-')[1].split('.pfm')[0]))
    shape = pred.shape[:2]
    num_instances = int(pred.max())

    # if no object detected
    if num_instances==0:
        _, pred =cv2.connectedComponentsWithAlgorithm((1-(pred==0).astype(np.uint8)),connectivity=8,ltype=cv2.CV_16U,ccltype=cv2.CCL_WU)
        num_instances = pred.max()

    if num_instances>0:
        pred_masks = torch.zeros((num_instances,)+shape).bool()
        for k in range(num_instances):
            pred_masks[k] = torch.Tensor(pred==(k+1))

        obj = Object()
        obj.image_height = shape[0]
        obj.image_width =  shape[1]
        obj._fields = {}
        obj._fields["pred_masks"] = pred_masks

        v = Visualizer(img, coco_metadata, scale=0.5, instance_mode=ColorMode.IMAGE_BW)
        try: