Esempio n. 1
0
    def InitFromContour(self, contour):
        # Prefilter on bounding rect because moments take some time
        self.recX, self.recY, self.recW, self.recH = cv2.boundingRect(contour)
        if self.recH < config['hand']['minimumHeight'] or self.recH > config['hand']['maximumHeight'] or self.recW < \
                config['hand']['minimumWidth'] or self.recW > config['hand']['maximumWidth']:
            return False

        self.handContour = contour
        self.properties['foundHand'] = True

        # Get general info
        self.moments = cv2.moments(contour)
        self.hull = cv2.convexHull(self.handContour, returnPoints = False)
        self.defects = cv2.convexityDefects(self.handContour, self.hull)

        _,radius = cv2.minEnclosingCircle(self.handContour)
        self.radius = int(radius / 1.2)
        self.centerX = int(self.moments['m10'] / self.moments['m00'])
        self.centerY = int(self.moments['m01'] / self.moments['m00'])

        self.properties['centerX'] = self.centerX
        self.properties['centerY'] = self.centerY

        self.InitGestures()

        return True
Esempio n. 2
0
def get_convex_hull_properties_in_slice(segment):


	cnt = np.array(segment.get_mid_slice_contour())
	cnt_len = cnt.shape[0]
	cnt = cnt.reshape((cnt_len,1,2))

	if len(cnt)>3:

		hull = cv2.convexHull(cnt,returnPoints = False)
		

		segment.feature_dict["mid_slice_convex_hull_indices"] = [x[0] for x in hull]

		try:
			defects = cv2.convexityDefects(cnt,hull)
			if defects is not None:
				segment.feature_dict["mid_slice_convexity_deffects"] = [[i for i in defects[k][0]] for k in xrange(len(defects))]
			else: 
				segment.feature_dict["mid_slice_convexity_deffects"] = [[]]
		except:
			segment.feature_dict["mid_slice_convexity_deffects"] = [[]]


	else:
		segment.feature_dict["mid_slice_convex_hull_indices"] = []
		segment.feature_dict["mid_slice_convexity_deffects"] = [[]]
Esempio n. 3
0
 def plot_contours(self,frame):
     img1,contours1, hierarchy1 = cv2.findContours(frame,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)
     cnt = self.max_area_contour(contours1)
     hull = cv2.convexHull(cnt,returnPoints = False)
     defects = cv2.convexityDefects(cnt,hull)
     drawing = np.zeros(frame.shape,np.uint8)
     drawing = cv2.cvtColor(drawing,cv2.COLOR_GRAY2RGB)
    # print defects.shape[0]
     for i in range(defects.shape[0]):
         k=1
         s,e,f,d = defects[k,0]
         start = tuple(cnt[s][0])
         end = tuple(cnt[e][0])
         far = tuple(cnt[f][0])
         cv2.circle(drawing,far,5,[0,0,255],-1)
         cv2.circle(drawing,end,5,[0,255,255],-1)
         #rect = cv2.minAreaRect(cnt)
         #angle=rect[2]
         #width,height=rect[1]
         #box = cv2.boxPoints(rect)
         #box = np.int0(box)
         #area = cv2.contourArea(cnt)
         #print area
         drawing = cv2.drawContours(drawing,[cnt],-1,150,1)
     return drawing,far,end
def updateCanny(arg):
    lt = cv2.getTrackbarPos('Edge Linking',frameName)
    ht = cv2.getTrackbarPos('Strong Edges',frameName)
    edges = cv2.Canny(frame,lt,ht)
    frame2 = copy.deepcopy(frame)
    contours, _ = cv2.findContours(edges,1,2)
    poly = []
    for cnt in contours:
        hull = cv2.convexHull(cnt,returnPoints = False)
        if(len(hull)>3 and len(cnt)>3):

            defects = cv2.convexityDefects(cnt,hull)
            if defects!=None:
                for i in range(defects.shape[0]):
                    s,e,f,d = defects[i,0]
                    start = tuple(cnt[s][0])
                    end = tuple(cnt[e][0])
                    far = tuple(cnt[f][0])
                    if i == 0:
                        poly.append(start)
                    poly.append(end)
                    #cv2.line(frame2,start,end,[0,255,0],2)
                    #cv2.circle(frame2,far,5,[0,0,255],-1)
    #print poly
    cv2.fillConvexPoly(frame2,np.array([poly]),(255,255,255))#-1,1,[255,255,255],-1)
    #cv2.drawContours(frame2,contours,-1,[255,0,0],3)
    edges = cv2.cvtColor(edges,cv2.COLOR_GRAY2BGR)
    frame2 = cv2.add(frame2,edges)

    cv2.imshow(frameName,frame2)
Esempio n. 5
0
def recognizeDigits( frame, level = 130 ):
    gray = cv2.cvtColor( frame, cv2.COLOR_BGR2GRAY )
    kernel = np.ones( (3,3), np.uint8)
    gray = cv2.erode( gray, kernel )
    ret, binary = cv2.threshold( gray, level, 255, cv2.THRESH_BINARY )
    tmp = cv2.cvtColor( binary, cv2.COLOR_GRAY2BGR )
    contours, hierarchy = cv2.findContours( binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE )
    ret = False
    c = None
    for i,h in enumerate(hierarchy[0]):
        n,p,child,parent = h
        x,y,w,h = cv2.boundingRect( contours[i] )
        if 20 < w < 140 and 20 < h < 180 and w < h < 2*w:
#            print i, (x, y), (x+w, y+h), w, h
            c = i
            b = -1
            if x > b and y > b and x+w < 640-b and y+h < 512-b:
                if parent >= 0 and fitsIn( (x-b,y-b,w+2*b,h+2*b), contours[parent] ):
                    if validDigitPosition( x, y, w, h ):
                        hull = cv2.convexHull( contours[c], returnPoints = False )
                        defects = cv2.convexityDefects( contours[c], hull )
                        # print defects                       
                        cv2.drawContours(tmp, [contours[c]], -1, (0,255,0), 2)
                        cv2.rectangle( tmp, (x,y), (x+w,y+h), color=(0,128,255), thickness=2 )
                        ret = True
    cv2.imshow( 'bin', tmp )
    return ret
def convex_corners_cross(pil_img, show_plot=False):
    mask_img = alpha_fill(pil_img)

    _,contours,_ = cv2.findContours(mask_img,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
    contour = contours[0]

    rect = cv2.minAreaRect(contour)
    box = cv2.boxPoints(rect)
    box = numpy.int0(box)

    hull = cv2.convexHull(contour,returnPoints = False)
    print(hull)
    defects = cv2.convexityDefects(contour,box)


    mask_img = cv2.cvtColor(mask_img, cv2.COLOR_GRAY2RGB)
    for i in range(defects.shape[0]):
        s,e,f,d = defects[i,0]
        start = tuple(contour[s][0])
        end = tuple(contour[e][0])
        far = tuple(contour[f][0])
        cv2.line(mask_img,start,end,[0,255,0],2)
        cv2.circle(mask_img,far,5,[0,0,255],-1)
    cv2.imshow('img',mask_img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
Esempio n. 7
0
def getFeatures(contoursClean):
    # get features for feature clustering
    X = np.zeros((IMAGES_N, FEATURES_N))
    for k in xrange(IMAGES_N):
        contour = contoursClean[k]
        image = imagesColor[k]
        hull = cv2.convexHull(contour, clockwise=True, returnPoints = False)
        # valleys is the poins between fingers
        # wanna find all defects and collect only valleys
        defects = cv2.convexityDefects(contour, hull)

        pointsContour = getPointsContour(defects, contour)
        pointsSort = clockwisePoints(pointsContour)
        # add distances between valleys as features
        for i in xrange(4):
            X[k, 8 + i] = length(pointsSort[2 * i % 4] - pointsSort[2 * (i + 1) % 4])
        # show lines and add features
        for i in xrange(len(pointsSort) - 1):
            start = pointsSort[i]
            end = pointsSort[i + 1]
            distance = length(start - end)
            # add distances between hole and nearest fingers as features
            X[k,i] = distance
            if args.save_images:
                cv2.line(image, tuple(start), tuple(end), [0, 255, 0], 2)
                cv2.imwrite(FOLDER_RESULT_LINES + "/" + objectsNames[k] + ENDING_LINES + FILE_EXTENSION, image)
            if args.show_lines:
                cv2.line(image, tuple(start), tuple(end), [0, 255, 0], 2)
                cv2.imshow('image', image)
                cv2.waitKey(0)

    return X
def detect_concave_locations(contour, img, draw):
    #get convext hull
    hull = cv2.convexHull(contour, returnPoints = False)
    #get defects in convexity
    #each row of defects containts the following:
    #(startPoint_of_defect, endPoint_of_defect, farthest point from hull, distance from hull)
    defects = cv2.convexityDefects(contour, hull)

    farPoints = []
    for i in range(defects.shape[0]):
        s,e,f,d = defects[i,0]
        far = tuple(contour[f][0])
        print 'this is distance'
        print d
        if d > 8000:
            farPoints.append(far)
            if draw is True:
                #cv2.line(img, start, end, [0, 255, 0], 2)
                cv2.circle(img, far, 5, [0, 0, 255], -1)
        
    if draw is True:
        cv2.imshow('img', img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    return farPoints
def handRecognition(img, sliderVals, gestures):
    imgColor = img.copy()
    img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
    
    minRange = cv2.cv.Scalar(sliderVals['Hmin'] , sliderVals['Smin'], 0.0)
    maxRange = cv2.cv.Scalar(sliderVals['Hmax'], sliderVals['Smax'], 255.0)
    img = cv2.inRange(img, minRange, maxRange)
    img = 255 - img
    kernel = np.ones((9, 9), np.uint8)
    img = cv2.dilate(cv2.erode(img, kernel), kernel)
    cv2.imshow("Details", img)
    #tools.showImages(testing=img)
    contours, _ = cv2.findContours(img, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    #biggestContour[0] == contour, biggestContour[1] == props
    if(len(contours) > 0):
        biggestContour = contours[0]
        biggestContourProps = regionProps.CalcContourProperties(contours[0], ["Area", "Centroid"])
        for contour in contours:
            #print contour
            props = regionProps.CalcContourProperties(contour, ["Area", "Centroid"])
            if(biggestContourProps["Area"] < props["Area"]):        
                biggestContour = contour
                biggestContourProps = props
        epsilon = cv2.arcLength(biggestContour, True)*0.0025
        biggestContour = cv2.approxPolyDP(biggestContour, epsilon, True)
        center = (int(biggestContourProps["Centroid"][0]), int(biggestContourProps["Centroid"][1]))
        cv2.circle(imgColor, center, 5, (0, 0, 255), (int(biggestContourProps["Area"]*.00005) + 1) ) 
        #cv2.drawContours(imgColor, [biggestContour], -1, (0, 255, 0))
        convexhull = cv2.convexHull(biggestContour, returnPoints = False)
        defects = cv2.convexityDefects(biggestContour, convexhull)
        newGestures = detectGestures(imgColor, biggestContour, biggestContourProps, defects, gestures)
        #cv2.drawContours(imgColor, [convexhull], -1, (0, 0, 255))

    return imgColor, newGestures
Esempio n. 10
0
def convexhullallcontours(contours):
    number = len(contours)
    status = numpy.zeros((number, 1))

    for i, cnt1 in enumerate(contours):
        x = i
        if i != number - 1:
            for j, cnt2 in enumerate(contours[i + 1:]):
                x += 1
                dist = arecontoursclose(cnt1, cnt2, distancethreshold=150)
                dist = True
                if dist is True:
                    val = min(status[i], status[x])
                    status[x] = status[i] = val
                    # ~ else:
                    # ~ print ("Do nothing")

    maximum = int(status.max()) + 1

    cont = None
    unified = []
    unified2 = []
    for i in xrange(maximum):
        pos = numpy.where(status == i)[0]
        if pos.size != 0:
            cont = numpy.vstack(contours[i] for i in pos)
            hull = cv2.convexHull(cont)
            hullindices = cv2.convexHull(cont, returnPoints=False)
            unified.append(hull)
            defects = cv2.convexityDefects(cont, hullindices)
            unified2.append(defects)

    return cont, unified, unified2
Esempio n. 11
0
def find_concave_regions(mask, max_dist):
    '''Finds convace regions along the contour of `mask`.

    Parameters
    ----------
    mask: numpy.ndarray[numpy.bool]
        mask image
    max_dist: int
        maximally tolerated distance between concave point on object contour
        and the convex hull
    '''
    contour_img = np.zeros(mask.shape, dtype=np.uint8)
    contour_img[mask] = 255
    contour_img, contours, _ = cv2.findContours(
        contour_img, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE
    )
    concave_img = np.zeros(mask.shape, dtype=np.bool)
    for cnt in contours:
        hull = cv2.convexHull(cnt, returnPoints=False)
        defects = cv2.convexityDefects(cnt, hull)
        if defects is not None:
            defect_pts = np.array([
                cnt[defects[j, 0][2]][0]
                for j in xrange(defects.shape[0])
                if defects[j, 0][3]/float(256) > max_dist
            ])
            if defect_pts.size != 0:
                concave_img[defect_pts[:, 1], defect_pts[:, 0]] = True
    return mh.label(concave_img)
Esempio n. 12
0
    def calibrate_threshold(self, img):
        hsv1 = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        h1,s1,v1 = cv2.split(hsv1)
        dummy, v1 = cv2.threshold(v1, self.threshold, 255, cv2.THRESH_BINARY)
        v1 = self.smart_filter(h1, v1)
        contours, hier = cv2.findContours(v1, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        cnts = [cnt for cnt in contours if cv2.contourArea(cnt) > 3000]
        c1 = self.biggest_cnt(cnts)
        if c1 == None:
            self.feedback()
            return None
        c1 = cv2.approxPolyDP(c1, 5, True)
        self.rects = [cv2.boundingRect(c1)]
        v1 = np.zeros(v1.shape, np.uint8)
        cv2.drawContours(v1,[c1],-1,(255,0,0),-1)
        hull = cv2.convexHull(c1, returnPoints = False)
        defects = cv2.convexityDefects(c1, hull)
        sum_area = 0
        for i in range(defects.shape[0]):
            s,e,f,d = defects[i][0]
            start = tuple(c1[s][0])
            end = tuple(c1[e][0])
            far = tuple(c1[f][0])
            t = np.array([[start], [end], [far]])
            sum_area += cv2.contourArea(t)
        self.defects_count = defects.shape[0]
        self.avg_area = cv2.contourArea(c1)
        self.prc_avg_area = self.avg_area/float(area(self.rects[0]))
        self.prc_defect_area = (sum_area/defects.shape[0])/self.avg_area

        self.feedback()
Esempio n. 13
0
def getIndexofContourWithMostDefects(contours):
    maxCount = 0
    maxIndex = 0
    for i in range(0, len(contours)):
        countGoodDefects = 0
        cnt = contours[i]
        hull = cv2.convexHull(cnt, returnPoints=False)
        defects = cv2.convexityDefects(cnt, hull)

        # print defects
        if defects is not None:
            # print "hi"
            for j in range(defects.shape[0]):
                s, e, f, d = defects[j, 0]
                start = tuple(cnt[s][0])
                end = tuple(cnt[e][0])
                far = tuple(cnt[f][0])
                angle = getAngle(start, far, end)
                if angle < 80:
                    countGoodDefects = countGoodDefects + 1

        if countGoodDefects > maxCount:
            maxCount = countGoodDefects
            maxIndex = i

            # print maxIndex
    return maxIndex
Esempio n. 14
0
 def findHullAndDefects(self):
     self.hullHandContour = cv2.convexHull(self.handContour,
                                             returnPoints = False)
     self.hullPoints = [self.handContour[i[0]] for i in self.hullHandContour]
     self.hullPoints = np.array(self.hullPoints, dtype = np.int32)
     self.defects = cv2.convexityDefects(self.handContour,
                                         self.hullHandContour)
Esempio n. 15
0
def defects(contour):
	hull = cv2.convexHull(contour, returnPoints=False)
	if hull is not None and len(hull > 3) and len(contour) > 3:
		defects = cv2.convexityDefects(contour, hull)	
		return defects
	else: 
		return None
Esempio n. 16
0
def draw_convex_hull(a, original):

    original = cv2.cvtColor(original, cv2.COLOR_GRAY2BGR)

    ret, b = cv2.threshold(a, 255, 255, cv2.THRESH_BINARY)

    contornos, jerarquia = cv2.findContours(a,
            cv2.RETR_EXTERNAL,
                cv2.CHAIN_APPROX_SIMPLE)

    for n, cnt in enumerate(contornos):

        hull = cv2.convexHull(cnt)
        foo = cv2.convexHull(cnt, returnPoints=False)
        cv2.drawContours(original, contornos, n, (0, 35, 245))
        if len(cnt) > 3 and len(foo) > 2:
            defectos = cv2.convexityDefects(cnt, foo)
            if defectos is not None:
                defectos = defectos.reshape(-1, 4)
                puntos = cnt.reshape(-1, 2)
                for d in defectos:
                    if d[3] > 20:
                        cv2.circle(original, tuple(puntos[d[0]]), 5, (255, 255, 0), 2)
                        cv2.circle(original, tuple(puntos[d[1]]), 5, (255, 255, 0), 2)
                        cv2.circle(original, tuple(puntos[d[2]]), 5, (0, 0, 255), 2)

        lista = numpy.reshape(hull, (1, -1, 2))
        cv2.polylines(original, lista, True, (0, 255, 0), 3)
        center, radius = cv2.minEnclosingCircle(cnt)
        center = tuple(map(int, center))
        radius = int(radius)
        cv2.circle(original, center, radius, (255, 0, 0), 3)

    cv2.imshow('Original', original)
Esempio n. 17
0
def detect(frame):
	cp = np.copy(frame)
	contours, hierarchy = cv2.findContours(cp,cv2.RETR_TREE,cv2.CHAIN_APPROX_TC89_L1)
	max_area = 0
	if len(contours)>0:
		ci = 0
		for i in range(len(contours)):
			cnt=contours[i]
			area = cv2.contourArea(cnt)
			if(area>max_area):
				max_area=area
				ci=i
		cnt=contours[ci]
		defects = []
		hull = cv2.convexHull(cnt,returnPoints = False)
		if (len(hull)>3 and len(cnt)>3):
			defects = cv2.convexityDefects(cnt,hull)
			M = cv2.moments(cnt)
			cent_x = int(M['m10']/M['m00'])
			cent_y = int(M['m01']/M['m00'])
			# if len(defects)>0:
			# 	for i in range(defects.shape[0]):
			# 		s,e,f,d = defects[i,0]
			# 		start = tuple(cnt[s][0])
			# 		end = tuple(cnt[e][0])
			# 		far = tuple(cnt[f][0])
			# 		cv2.line(frame,start,end,[0,255,0],2)
			# 		cv2.circle(frame,far,5,[0,0,255],-1)
				# cv2.imshow('cvhull', frame)
				# cv2.waitKey(99999)
		try:
			return (cent_x, cent_y), len(defects)
		except:
			return (0,0), 0
	return (0,0), 0
Esempio n. 18
0
def detectaMao(frame, mascara):
    bckpmas = np.copy(mascara)
    img, contornos, hieraquia = cv2.findContours(mascara, 0, 2)
    if len(contornos) == 0:
        return
    maior_contorno = selecionaMaiorContorno(contornos)
    cv2.polylines(frame, [maior_contorno], True, verde, 1)
    hull = cv2.convexHull(maior_contorno, returnPoints=False)
    defects = cv2.convexityDefects(maior_contorno, hull)
    if defects == None:
        return
    defects_detectados = [] # Lista vazia de defects detectados
    for i in xrange(defects.shape[0]):
        a, b, c, d = defects[i, 0]
        ini   = tuple(maior_contorno[a, 0])
        fim   = tuple(maior_contorno[b, 0])
        cvx   = tuple(maior_contorno[c, 0])
        cv2.line(frame,ini,fim,verde,1)
        angulo  = calculaAngulo(ini,cvx,fim)
        if 10 < angulo < 120 and d > 15000:
            pos = c*100/len(maior_contorno) # posicao do defect no contorno
            dados = (ini,cvx,fim,angulo,pos)
            defects_detectados.append(dados)
            cv2.putText(frame,str(pos),cvx,1,1,branco)
            cv2.circle(frame,cvx,3,vermelho,-1)
    dedos = identificaDedos(defects_detectados)
    exibeInfo(frame,bckpmas,dedos)
Esempio n. 19
0
File: ubicomp.py Progetto: mopat/A7
    def gestureRecognizer(self):
        cv2.rectangle(self.img, (300, 300), (100, 100), (0, 255, 0), 0)
        crop_img = self.img[100:300,  100:300]
        grey = cv2.cvtColor(crop_img,  cv2.COLOR_BGR2GRAY)
        value = (35,  35)
        blurred = cv2.GaussianBlur(grey,  value,  0)
        _, thresh1 = cv2.threshold(blurred, 127, 255,
                                   cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
        cv2.imshow('Thresholded', thresh1)
        contours, hierarchy = cv2.findContours(thresh1.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
        max_area = -1
        for i in range(len(contours)):
            cnt = contours[i]
            area = cv2.contourArea(cnt)
            if area > max_area:
                max_area = area
                ci = i
        cnt = contours[ci]
        x, y, w, h = cv2.boundingRect(cnt)
        cv2.rectangle(crop_img, (x, y), (x+w, y+h), (0, 0, 255), 0)
        hull = cv2.convexHull(cnt)
        drawing = np.zeros(crop_img.shape, np.uint8)
        cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 0)
        cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 0)
        hull = cv2.convexHull(cnt, returnPoints=False)
        defects = cv2.convexityDefects(cnt, hull)
        count_defects = 0
        cv2.drawContours(thresh1, contours, -1, (0, 255, 0), 3)
        for i in range(defects.shape[0]):
            s, e, f, d = defects[i, 0]
            start = tuple(cnt[s][0])
            end = tuple(cnt[e][0])
            far = tuple(cnt[f][0])
            a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
            b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
            c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
            angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 57
            if angle <= 90:
                count_defects += 1
                cv2.circle(crop_img, far, 1, [0, 0, 255], -1)
            cv2.line(crop_img, start, end, [0, 255, 0], 2)

        # start actions when number of fingers is recognized
        if count_defects == 2:
            cv2.putText(self.img, "Volume Down", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, 2)
            self.volumeDown(1)
        elif count_defects == 3:
            cv2.putText(self.img, "Volume Up", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
            self.volumeUp(1)
        elif count_defects == 4:
            cv2.putText(self.img, "Play/Pause", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, 2)
            self.pauseAndStartVideo(2)
        else:
            cv2.putText(self.img, "Finger Control", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, 2)
        cv2.imshow('Gesture', self.img)
        all_img = np.hstack((drawing, crop_img))

        # Display the resulting frame
        cv2.imshow('Contours', all_img)
Esempio n. 20
0
def contour_reader(image):
    temp = image # store here because findContours modifes source

    contours, hierarchy = cv2.findContours(image,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
    cnt = contours[0]

    # check curve for convexity defects and correct it
    # pass in contour points, hull, !returnPoints return indices
    hull = cv2.convexHull(cnt,returnPoints = False)
    defects = cv2.convexityDefects(cnt,hull) # array

    image = temp # revert to original
    cv2.drawContours(image, contours, 0, (255,255,255), 1)
    image = colorize(image) # prep for drawing in color

    # defects returns four arrays: start point, end point, farthest
    # point (indices of cnt), and approx distance to farthest point
    interdigitalis = 0 # representing tip of finger to convext points
    if len(hull) > 3 and len(cnt) > 3 and (defects is not None):
        for i in range(defects.shape[0]):
            s,e,f,d = defects[i,0]
            start = tuple(cnt[s][0])
            end = tuple(cnt[e][0])
            far = tuple(cnt[f][0])
            # print start, end, far
            cv2.line(image,start,end,[0,255,0],1)
            cv2.circle(image,far,3,[255,0,255],-1)
            # print d
            if d > 6000: # set by trial and error
                interdigitalis += 1
    # print 'interdigitalis:', interdigitalis

    # find centroid
    M = cv2.moments(cnt)
    cx = int(M['m10']/M['m00'])
    cy = int(M['m01']/M['m00'])
    centroid = (cx, cy)
    cv2.circle(image, centroid, 6, (255,255,0), -1)
    show(image, 1000)
    # print 'centroid:', centroid

    gesture = classify(interdigitalis)
    # print 'gesture', gesture

    # calculate size for height as image is a numpy array
    h = len(image)
    location,lst = locate(h,cx,cy)
    # print location

    # draw visual grid based on list coordinates returned by locate function
    for i in xrange(0, len(lst), 2):
        a = lst[i]
        b = lst[i+1]
        # print a,b
        cv2.line(image,a,b,[128,128,128],1)
    show(image, 1000)

    pair = (gesture, location)
    return image,pair
Esempio n. 21
0
def tip(arrow):
    hull = cv2.convexHull(arrow, returnPoints=False)
    defects = cv2.convexityDefects(arrow, hull)
    farpoints = [d[0][2] for d in defects]
    if np.abs(farpoints[0] - farpoints[1]) == 4:
        return arrow[sum(farpoints) / 2, 0]
    else:
        return arrow[0, 0]
Esempio n. 22
0
 def get_defects(self, cnt, hull):
   """
   Get convexity defects from a contour.
   """
   if len(cnt) > 3:
     return cv2.convexityDefects(cnt, hull)
   else:
     return None
 def _extract_convexity_defects(contour):
     hull = cv2.convexHull(contour, returnPoints=False)
     if len(hull) > 0:
         defects = cv2.convexityDefects(contour, hull)
         defects = defects.reshape(-1, 4)
         return defects
     else:
         raise NoHandException
def find_contour_and_convexity_defect(im,imgray):
	'''
		binarise the image on the basis of the threshold 127
	'''
	ret,thresh = cv2.threshold(imgray,127,255,0)
	
	#find countours on the binary image using the opencv draw_countours method
	contours,hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
	
	#an array storing the length of countours found using findContours
	c = [len(c) for c in contours]

	#draw the contours on the image
	cv2.drawContours(im, [contours[c.index(max(c))]], 0, (0,255,0), 1)

	#only consider the contour having the largest number of points
	cnt = [contours[c.index(max(c))]][0]

	#draw convexhull on the contours enclosing the hand
	hull = cv2.convexHull(cnt,returnPoints = False)

	#find the convexity defectsin the convex hull
	defects = cv2.convexityDefects(cnt,hull)

	#count of the number of the filtered defects
	c = 0
	
	if(defects == None) :
		'''
			return a tupple using the image and the count if there are no defects
		'''
		return (im, c)

	for i in range(defects.shape[0]):
		'''
			for each convexity defects we have the start point the farthest point and
			the end point
		'''
		s,e,f,d = defects[i,0]
		start = tuple(cnt[s][0])
		end = tuple(cnt[e][0])
		far = tuple(cnt[f][0])

		#draw the convex hull edge corresponding to the convex defects
		cv2.line(im,start,end,[0,255,0],2)
		#find the angle of the convex hull defect
		angle = (find_angle(list(cnt[s][0]), list(cnt[f][0]), (cnt[e][0])))		
		if(angle < 90) :
			'''
				only consider a defect if the angle corresponding to it is less
				than 90 degree
			'''
			c += 1
			#mark the points on the convex hull and the convex defects
			cv2.circle(im,start,5,[0,255,255],-1)
			cv2.circle(im,end,5,[0,255,255],-1)
			cv2.circle(im,far,5,[0,0,255],-1)
	return (im, c)
Esempio n. 25
0
def compute_shape_metrics(labels):
    reader = csv.reader(open(labels))

    results = None

    for row in reader:
      if row[0] == "IMG":
        continue
      name = row[0]
      if (row[1] == " metal_lines" or row[1]==" metal_tree"):
        continue
      buf = 10
      x = int(row[2])
      y = int(row[3])
      x_size = int(row[4])/2 + buf
      y_size = int(row[5])/2 + buf

      # Load Images
      img = cv2.imread(name+".jpg")
      # Color Space Conversion
      lab = cv2.cvtColor(img,cv2.COLOR_BGR2LAB)
      win = img[y-y_size:y+y_size,x-x_size:x+x_size]
      lab_win = lab[y-y_size:y+y_size,x-x_size:x+x_size]
      mid = (float(np.max(lab_win[...,1]))+float(np.min(lab_win[...,1])))/2.
      thresh = cv2.threshold(lab_win[...,1],mid,255,cv2.THRESH_BINARY)[1]
      # Contours
      contours, hier = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
      largest_area = 0
      largest_contour = 0
      for i in contours:
          area = cv2.contourArea(i)
          if area > largest_area:
              largest_area = area
              largest_contour = i
      # Hulls
      hull = cv2.convexHull(largest_contour,returnPoints=False)
      hull_pts = cv2.convexHull(largest_contour)
      # Perimeter Difference
      perimeter_ratio = cv2.arcLength(hull_pts,True)/cv2.arcLength(largest_contour,True)
      # Area Difference
      area_ratio = cv2.contourArea(largest_contour)/cv2.contourArea(hull_pts)
      # Max Convexity Defect
      defects = cv2.convexityDefects(largest_contour,hull)
      depth = np.max(defects[...,-1])/256.0
      rect = cv2.boundingRect(hull_pts)
      defect_ratio = depth/np.max(rect[2:])
      # Combined Score
      print perimeter_ratio,area_ratio,defect_ratio,np.sum(defects[...,-1]),row[-1],row[1]
      #print perimeter_ratio,area_ratio,np.max(defects[...,-1]),np.sum(defects[...,-1]),row[-1],row[1]
      if results == None:
          results = np.array([perimeter_ratio,area_ratio,defect_ratio,])
          #results = np.array([perimeter_ratio,area_ratio,defect_ratio,np.sum(defects[...,-1])])
          #results = np.array([perimeter_ratio,area_ratio,np.max(defects[...,-1]),np.sum(defects[...,-1])])
      else:
          results = np.vstack((results,np.array([perimeter_ratio,area_ratio,defect_ratio])))
          #results = np.vstack((results,np.array([perimeter_ratio,area_ratio,defect_ratio,np.sum(defects[...,-1])])))
          #results = np.vstack((results,np.array([perimeter_ratio,area_ratio,np.max(defects[...,-1]),np.sum(defects[...,-1])])))
    return results
Esempio n. 26
0
def extract(mask):
    
    height, width = mask.shape
    pixels = height * width
    
    # spatial and central moments
    moments = cv2.moments(mask, binary = 1)
    huMoments = cv2.HuMoments(moments)
    
    # distances from the gravity point
    contour_seq = cv2.findContours(np.array(mask), cv2.CV_RETR_TREE, cv2.CV_CHAIN_APPROX_SIMPLE)
    gravity_center = (int(moments.m10/moments.m00), int(moments.m01/moments.m00)) # (x, y)
    gx, gy = gravity_center
    distances = np.array([math.sqrt((gx - x)**2 + (gy - y)**2) for (x,y) in contour_seq])
    dist_distri, bin_dist = np.histogram(distances, bins=10, normed=True)
    dist_max = np.max(distances)
    dist_min = np.min(distances)
    dist_ratio_min_max = dist_min / dist_max
    dist_mean = np.mean(distances)
    dist_std = np.std(distances)
    
    # number of petals
    nbPetals = np.sum([min(x1,x2) < dist_mean < max(x1,x2) for x1,x2 in zip(distances[:-1], distances[1:])])/2
    
    # normalize distance min and max
    dist_max = dist_max / pixels
    dist_min = dist_min / pixels
    dist_mean = dist_mean / pixels
    dist_std = dist_std / pixels
    
    poly_seq = cv2.approxPolyDP(contour_seq, 2.8, True)
    
    convex_hull = cv2.convexHull(poly_seq)
    convexity_defects = cv2.convexityDefects(poly_seq, convex_hull)
    
    # number of defects
    nbDefects = len(convexity_defects)
    
    convexity_depths = np.array([cd[3] for cd in convexity_defects])
    convexity_depth_max = np.max(convexity_depths)
    convexity_depth_min = np.min(convexity_depths)
    convexity_depth_ratio_min_max = convexity_depth_min / convexity_depth_max
    
    #normalize
    convexity_depth_max = convexity_depth_max / pixels
    
    area = cv2.contourArea(contour_seq)
    perimeter = cv2.arcLength(contour_seq, True)
    perimeterOarea = perimeter/area

    features = []
    features += list(huMoments) # 7
    features += list(dist_distri) # 10
    features += dist_ratio_min_max, nbPetals, nbDefects #, dist_max, dist_min, dist_mean, dist_std
    features += convexity_depth_ratio_min_max, convexity_depth_max, perimeterOarea
    
    return features
Esempio n. 27
0
    def run(self, contour):
        contour = self._contour_approx(contour)
        hull = cv2.convexHull(contour, returnPoints=False)
        if len(hull) < self.MIN_HULL_POINTS:
            return []

        defects = cv2.convexityDefects(contour, hull)
        box = cv2.boundingRect(contour)
        return (defects, box)
Esempio n. 28
0
    def track(self, frame, hist):
        tracking_frame = self.apply_hist_mask(frame, hist)
        tracking_frame = cv2.morphologyEx(tracking_frame, cv2.MORPH_OPEN, np.ones((19, 19), np.uint8))
        tracking_frame = cv2.morphologyEx(tracking_frame, cv2.MORPH_CLOSE, np.ones((51, 11), np.uint8))
        cv2.GaussianBlur(tracking_frame, (17, 17), 0, tracking_frame)

        gray = cv2.cvtColor(tracking_frame, cv2.COLOR_BGR2GRAY)
        ret, thresh = cv2.threshold(gray, 0, 255, 0)
        _, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        if contours is not None and len(contours) > 0:
            max_contour = self.calc_max_contour(contours)

            hull = cv2.convexHull(max_contour)
            cv2.drawContours(tracking_frame, [hull], 0, (0, 0, 255), 0)

            cv2.drawContours(tracking_frame, max_contour, -1, (0, 255, 0), 3)

            centroid = self.calc_centroid(max_contour)

            (x, y), radius = cv2.minEnclosingCircle(max_contour)
            cv2.circle(tracking_frame, (int(x), int(y)), int(radius), (0, 255, 0), 2)

            self.hand_center = (int(x), int(y))
            self.hand_radius = radius

            defects = self.calc_defects(max_contour)

            if centroid is not None and defects is not None and len(defects) > 0:
                farthest_point = self.calc_farthest_point(defects, max_contour, centroid)

                if farthest_point is not None:
                    cv2.circle(tracking_frame, farthest_point, 5, [0, 0, 255], -1)

            defects = cv2.convexityDefects(max_contour, cv2.convexHull(max_contour, returnPoints=False))

            count_defects = 0

            for i in range(defects.shape[0]):
                s, e, f, d = defects[i, 0]
                start = tuple(max_contour[s][0])
                end = tuple(max_contour[e][0])
                far = tuple(max_contour[f][0])
                a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
                b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
                c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
                angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) * 57
                if angle <= 90:
                    count_defects += 1
                    cv2.circle(tracking_frame, far, 1, [0, 0, 255], -1)
                #dist = cv2.pointPolygonTest(max_contour,far,True)
                cv2.line(tracking_frame, start, end, [0, 255, 0], 2)

            self.fingers = count_defects

        return tracking_frame
Esempio n. 29
0
	def _contourConvexityDefects(contours):
		contourConvexityDefects = {}
		for contour in contours:
			hullIndices = cv2.convexHull(contour, returnPoints=False)
			if len(hullIndices)>3 and len(contour)>3:
				defects = cv2.convexityDefects(contour, hullIndices)
				contour.flags.writeable = False
				contourConvexityDefects[Helpers.hashable(contour)] = defects
				# pass
		return contourConvexityDefects
 def get_defects(self, cnt, drawing):
     defects = None        
     hull = cv2.convexHull(cnt)
     cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 0)
     cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 0)
     hull = cv2.convexHull(cnt, returnPoints=False)       # For finding defects
     if hull.size > 2:
         defects = cv2.convexityDefects(cnt, hull)        
     
     return defects
Esempio n. 31
0
    def trackHand(self, cnt, frame, textPos,
                  width):  # Tracks hand position and number of fingers
        cv2 = self.cv2
        math = self.math

        count = 0
        side = 0
        moments = cv2.moments(cnt)
        # Finds center coordinates for hand
        cx = int(moments['m10'] / moments['m00'])
        cy = int(moments['m01'] / moments['m00'])
        hull = cv2.convexHull(
            cnt, returnPoints=False
        )  # Finds convex hull of the hand contour (only indices)
        pointsHull = cv2.convexHull(
            cnt, returnPoints=True
        )  # Finds convex hull of the hand contour (actual points)

        # Finds shortest distance from the center of the hand to the convex hull
        radius = int(1.2 * cv2.pointPolygonTest(pointsHull, (cx, cy), True))
        # Draws largest circle inside the convex hull centered at (cx, cy)
        cv2.circle(frame, (cx, cy), radius, (255, 255, 255), 2)

        x, y, w, h = cv2.boundingRect(
            cnt)  # Draws bounding rectangle around hand
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        # Finds convexity defects along contour based on its convex hull
        defects = cv2.convexityDefects(cnt, hull)

        if cx < width / 2:  # Center of the hand is on the left side of the screen
            side = 0
        elif cx > width / 2:  # Center of the hand is on the right side of the screen
            side = 1

        try:
            for i in range(
                    defects.shape[0]):  # For all convexity defects found
                s, e, f, d = defects[i, 0]

                start = tuple(cnt[s][0])
                end = tuple(cnt[e][0])
                far = tuple(cnt[f][0])
                # Find length of sides of triangle between two nearest points on convex hull and convexity defect
                a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
                b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
                c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)

                # Use Law of Cosines to find angle of triangle at convexity defect
                angle = math.acos((b**2 + c**2 - a**2) / (2 * b * c)) * 57

                # Determines end points to draw lines that most closely approximate the fingers
                if side:  # If the hand is on the right side, use the closest right point on the convex hull
                    fingerLen = b
                    defectPoint = start
                else:  # If the hand is on the left side, use the closest left point on the convex hull
                    fingerLen = c
                    defectPoint = end

                    # If the height of the bounding rectangle is smaller than the diameter of the center circle,
                    # then the hand must be in a fist, and therefore no fingers are up
                if h > 2.4 * radius:
                    if fingerLen >= h / 4 and angle < 90:
                        count += 1
                        # cv2.circle(frame, far, 1, [0, 0, 255], 6)
                        # cv2.circle(frame, end, 1, [0, 0, 255], 12)
                        cv2.line(frame, defectPoint, far, [255, 0, 0],
                                 2)  # Draws lines that approximate fingers
                else:
                    return (0, (side, (cx, cy))
                            )  # No fingers are up, then the hand is in a fist

                cv2.line(frame, start, end, [0, 255, 0], 2)  #Draws contours
            return (count + 1, (side, (cx, cy)))

        except (AttributeError):
            print("No defects found")
            return (0, (side, (cx, cy)))
class hand(object):
    #LOADING HAND CASCADE
    hand_cascade = cv2.CascadeClassifier('hand_haar_cascade.xml')

    # VIDEO CAPTURE
    cap = cv2.VideoCapture(0)
    while 1:
        ret, img = cap.read()
        blur = cv2.GaussianBlur(img, (5, 5),
                                0)  # BLURRING IMAGE TO SMOOTHEN EDGES
        #BGR->grey
        gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
        #threshold the image
        retval2, thresh1 = cv2.threshold(
            gray, 70, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
        #detecting hand in threshold image
        hand = hand_cascade.detectMultiScale(thresh1, 1.3, 5)
        #create mask
        mask = np.zeros(thresh1.shape, dtype="uint8")
        #detecting roi
        for (x, y, w, h) in hand:
            cv2.rectangle(img, (x, y), (x + w, y + h), (122, 122, 0), 2)
            cv2.rectangle(mask, (x, y), (x + w, y + h), 255, -1)
        img2 = cv2.bitwise_and(thresh1, mask)
        final = cv2.GaussianBlur(img2, (7, 7), 0)
        contours, hierarchy = cv2.findContours(final, cv2.RETR_TREE,
                                               cv2.CHAIN_APPROX_SIMPLE)

        cv2.drawContours(img, contours, 0, (255, 255, 0), 3)
        cv2.drawContours(final, contours, 0, (255, 255, 0), 3)

        if len(contours) > 0:
            cnt = contours[0]
            hull = cv2.convexHull(cnt, returnPoints=False)
            # finding convexity defects
            defects = cv2.convexityDefects(cnt, hull)
            count_defects = 0
            # applying Cosine Rule to find angle for all defects (between fingers)
            # with angle > 90 degrees and ignore defect
            if defects is not None:
                for i in range(defects.shape[0]):
                    p, q, r, s = defects[i, 0]
                    finger1 = tuple(cnt[p][0])
                    finger2 = tuple(cnt[q][0])
                    dip = tuple(cnt[r][0])
                    # find length of all sides of triangle
                    a = math.sqrt((finger2[0] - finger1[0])**2 +
                                  (finger2[1] - finger1[1])**2)
                    b = math.sqrt((dip[0] - finger1[0])**2 +
                                  (dip[1] - finger1[1])**2)
                    c = math.sqrt((finger2[0] - dip[0])**2 +
                                  (finger2[1] - dip[1])**2)
                    # apply cosine rule here
                    angle = math.acos(
                        (b**2 + c**2 - a**2) / (2 * b * c)) * 57.29
                    # ignore angles > 90 and highlight rest with red dots
                    if angle <= 90:
                        count_defects += 1
            # define actions required
            if count_defects == 0:
                cv2.putText(img, "THIS IS 1", (50, 50),
                            cv2.FONT_HERSHEY_SIMPLEX, 2, 2)
            elif count_defects == 1:
                cv2.putText(img, "THIS IS 2", (50, 50),
                            cv2.FONT_HERSHEY_SIMPLEX, 2, 2)
            elif count_defects == 2:
                cv2.putText(img, "THIS IS 3", (50, 50),
                            cv2.FONT_HERSHEY_SIMPLEX, 2, 2)
            elif count_defects == 3:
                cv2.putText(img, "This is 4", (50, 50),
                            cv2.FONT_HERSHEY_SIMPLEX, 2, 2)
            elif count_defects == 4:
                cv2.putText(img, "THIS IS 5", (50, 50),
                            cv2.FONT_HERSHEY_SIMPLEX, 2, 2)
        cv2.imshow('img', thresh1)
        cv2.imshow('img1', img)
        cv2.imshow('img2', img2)

        k = cv2.waitKey(30) & 0xff
        if k == 27:
            break
    cap.release()
    cv2.destroyAllWindows()
Esempio n. 33
0
def find_fingers(cnt, center, wrist, offset, rad):

    bx, by, bw, bh = cv2.boundingRect(cnt)
    hull = cv2.convexHull(cnt, returnPoints=False)
    #deft = cv2.convexityDefects(cnt,hull)
    defects = cv2.convexityDefects(cnt, hull)
    if defects is not None:
        #idx = np.sort(deft.T[3][0].argsort()[-num:]) # choose 4 largest distant
        #defects = deft[idx]

        cor = []
        mid = []

        for i in xrange(len(defects)):
            s, e, f, d = defects[i, 0]
            cor.append(tuple(cnt[s][0]))  #append start pt
            cor.append(tuple(cnt[e][0]))  #append end pt
            #---append twice ----
            mid.append(tuple(cnt[f][0]))
            mid.append(tuple(cnt[f][0]))

        #-- select real finger points

        cmtx = np.array(cor)
        mmtx = np.array(mid)
        distchk = ((cmtx.T[0] - center[0])**2 + (cmtx.T[1] - center[1])**
                   2)**0.5 > max(bw, bh) / 3.  #finger len check
        wristchk = ((mmtx.T[0] - wrist.x + offset[0])**2 +
                    (mmtx.T[1] - wrist.y + offset[1])**2)**0.5 > (
                        (center[0] - wrist.x + offset[0])**2 +
                        (center[1] - wrist.y + offset[1])**2)**0.5
        aglchk = find_angle(cmtx, np.array(mid)) < 90  # finger angle check
        #pdb.set_trace()
        chkidx = np.where((aglchk & distchk & wristchk) == True)[0]
        #chkidx = np.where((aglchk&distchk)==True)[0]

        cor = list(set([cor[i] for i in chkidx]))  #remove duplicate pts
        cormtx = np.array(cor)
        chk = len(cor)
        X = np.array([])
        Y = np.array([])

        if chk > 1:  # more than 5 finger points # merger close pt pairs

            # calculate distance
            XX1 = np.tile(cormtx.T[0], (chk, 1))
            XX2 = np.tile(np.array([cormtx.T[0]]).T, (1, chk))
            YY1 = np.tile(cormtx.T[1], (chk, 1))
            YY2 = np.tile(np.array([cormtx.T[1]]).T, (1, chk))

            distpt = ((XX1 - XX2)**2 + (YY1 - YY2)**2)**0.5  #pt dist mtx
            #th = np.sort(list(set(distpt.flatten())))[chk-5] # set a threshold
            th = rad / 5.
            distpt[distpt > th] = 0
            # find shortest dist in dist matrix (in upper triangle)
            temp = np.nonzero(np.triu(distpt))  # points coordinate
            dup = (np.bincount(temp[0], minlength=chk) > 1) | (np.bincount(
                temp[1], minlength=chk) > 1)
            duppts = np.where(dup)[0]  #duplicat pts: one pt close to multi pts
            rmidx = np.array([])

            for i in duppts:
                dupidx = np.where((temp[0] == i) | (temp[1] == i))[0]
                minidx = distpt[temp[0][dupidx], temp[1][dupidx]].argmin()
                delidx = np.delete(dupidx, minidx)
                rmidx = np.append(rmidx, delidx)

            X = np.delete(temp[0], rmidx)
            Y = np.delete(temp[1], rmidx)

            #-- merge points

            fingeridx = np.delete(np.arange(chk), np.append(X, Y))
            finger = [cor[i] for i in fingeridx]

            for i, j in zip(X, Y):
                finger.append(tuple(np.add(cor[i], cor[j]) // 2))
            return finger
        elif chk == 1:
            return cor

        else:
            return False
    else:
        return False
    def run(self, one):
        coun_max = 0
        while True:

            if not self.paused:
                ret, self.frame = self.cap.read()
                if not ret:
                    break
                frame_gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
                blurgray = cv2.GaussianBlur(frame_gray, (5, 5), 0)
                ret, thresh1 = cv2.threshold(
                    blurgray, 70, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
                #5cv2.imshow('thresh',thresh1)
                image, contours, hierarchy = cv2.findContours(
                    thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
                drawing = np.zeros(self.frame.shape, np.uint8)
                max_area = 0
                ci = 0
                for i in range(len(contours)):
                    cnt = contours[i]
                    area = cv2.contourArea(cnt)
                    if (area > max_area):
                        max_area = area
                        ci = i
                cnt = contours[ci]
                hull = cv2.convexHull(cnt)
                moments = cv2.moments(cnt)
                if moments['m00'] != 0:
                    cx = int(moments['m10'] / moments['m00'])  # cx = M10/M00
                    cy = int(moments['m01'] / moments['m00'])  # cy = M01/M00

                centr = (cx, cy)
                cv2.circle(self.frame, centr, 5, [0, 0, 255], 2)
                cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 2)
                cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 2)

                cnt = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True),
                                       True)
                hull = cv2.convexHull(cnt, returnPoints=False)

                if (1):
                    defects = cv2.convexityDefects(cnt, hull)
                    mind = 0
                    maxd = 0
                    coun = 0

                    for i in range(defects.shape[0]):
                        coun = coun + 1
                        s, e, f, d = defects[i, 0]
                        start = tuple(cnt[s][0])
                        end = tuple(cnt[e][0])
                        far = tuple(cnt[f][0])
                        dist = cv2.pointPolygonTest(cnt, centr, True)
                        cv2.line(self.frame, start, end, [0, 255, 0], 2)
                        cv2.circle(self.frame, far, 5, [0, 0, 255], -1)
                        cv2.circle(self.frame, start, 5, [255, 0, 0], -1)

                    i = 0
                    font = cv2.FONT_HERSHEY_SIMPLEX
                    cv2.putText(self.frame, str(coun), (0, 40), font, 1,
                                (0, 0, 0), 2)
                    cv2.putText(self.frame, str(coun_max), (0, 80), font, 1,
                                (0, 0, 0), 2)

                    if (coun == coun_max + 1):
                        while (one == 0):
                            (x, y) = win32api.GetCursorPos()
                            win32api.mouse_event(
                                win32con.MOUSEEVENTF_RIGHTDOWN,
                                int(screenWidth / 2 - 2 * x), int(2 * y), 0, 0)
                            win32api.mouse_event(win32con.MOUSEEVENTF_RIGHTUP,
                                                 int(screenWidth / 2 - 2 * x),
                                                 int(2 * y), 0, 0)
                            end = 1
                            one = 1
                    if (coun == coun_max - 1):
                        while (one == 0):
                            (x, y) = win32api.GetCursorPos()
                            win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN,
                                                 int(screenWidth / 2 - 2 * x),
                                                 int(2 * y), 0, 0)
                            win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP,
                                                 int(screenWidth / 2 - 2 * x),
                                                 int(2 * y), 0, 0)
                            end = 1
                            one = 1

                    #if(coun == coun_max-2):
                    #while(one==0):
                    #(x,y) = win32api.GetCursorPos()
                    #win32api.mouse_event(MOUSEEVENTF_WHEEL, x, y, -1, 0)
                    #end=1
                    #one=1

                    if (coun == coun_max):
                        end = 0
                        one = 0
                for tracker in self.trackers:
                    tracker.update(frame_gray)

            vis = self.frame.copy()
            for tracker in self.trackers:
                tracker.draw_state(vis, 0)
            if len(self.trackers) > 0:
                cv2.imshow('tracker state', self.trackers[-1].state_vis)
            self.rect_sel.draw(vis)

            cv2.imshow('frame', vis)
            ch = cv2.waitKey(10)
            if ch == ord('s'):
                coun_max = coun
                a = cx - 80
                b = cy - 80
                c = cx + 80
                d = cy + 80
                frame_gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
                tracker = MOSSE(frame_gray, (a, b, c, d))
                self.trackers.append(tracker)
            if ch == 27:
                self.cap.release()
                break
            if ch == ord(' '):
                self.paused = not self.paused
            if ch == ord('c'):
                self.trackers = []
                coun_max = 0
Esempio n. 35
0
    ret, thresh_blue = cv2.threshold(bnw_blue, 0, 255,
                                     cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)

    fgmask_blue = fgbg.apply(thresh_blue)

    blur_blue = cv2.GaussianBlur(fgmask_blue, (5, 5), 0)

    contimage, contours_blue, hierarchy = cv2.findContours(
        blur_blue, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    for i in range(len(contours_blue)):
        cnt1 = np.array(contours_blue[i])
    nothing

    hull_blue = cv2.convexHull(cnt1, returnPoints=False)
    defects_blue = cv2.convexityDefects(cnt1, hull_blue)
    (x, y), radius_blue = cv2.minEnclosingCircle(cnt1)
    center_blue = (int(x), int(y))
    radius_blue = int(radius_blue)
    rect_blue = cv2.minAreaRect(cnt1)
    box_blue = cv2.boxPoints(rect_blue)
    box_blue = np.int0(box_blue)
    final_blue = cv2.circle(frame, center_blue, radius_blue, (0, 255, 0), 2)
    final2_blue = cv2.circle(frame, center_blue, 10, (255, 0, 0), 2)
    final3_blue = cv2.drawContours(frame, [box_blue], 0, (0, 0, 255), 2)

    if contours_blue == empty:
        if gesture == empty1:
            pass
        else:
            main_gesture.append(gesture)
Esempio n. 36
0
    def analyze_video(self):
        """Detect the gestures of the person and add them to output

        Press 'p' to pause the analysis
        Press 'q' to quit the analysis (output will be modified anyway)
        """
        cap = cv2.VideoCapture(self.path)

        #out = cv2.VideoWriter('finalVideoKeypoints.avi', cv2.VideoWriter_fourcc(*'MJPG'), 25, (1280, 720))

        if cap.isOpened() == False:
            print("Error opening video  file")

        while cap.isOpened():
            ret, frame = cap.read()

            # Get hand data from a rectangle sub window
            vid_points = {
                0: {
                    'x': (150, 300),
                    'y': (100, 350)
                },
                1: {
                    'x': (300, 600),
                    'y': (50, 300)
                },
                2: {
                    'x': (50, 250),
                    'y': (100, 300)
                }
            }
            pt1 = [
                (vid_points[0]['x'][0], vid_points[0]['y'][0]),
                (vid_points[1]['x'][0], vid_points[1]['y'][0]),
                (vid_points[2]['x'][0], vid_points[2]['y'][0])
            ]
            pt2 = [
                (vid_points[0]['x'][1], vid_points[0]['y'][1]),
                (vid_points[1]['x'][1], vid_points[1]['y'][1]),
                (vid_points[2]['x'][1], vid_points[2]['y'][1])
            ]

            try:
                # First video: (0, 0), (640, 360)
                # Second video: (640, 0), (1280, 360)
                # Third video: (0', 360), (640, 720)
                first_video = frame[0:360, 0:640]
                second_video = frame[0:360, 640:1280]
                third_video = frame[360:720, 0:640]

                cv2.rectangle(first_video, pt1[0], pt2[0], (0, 255, 255), 3)
                cv2.rectangle(second_video, pt1[1], pt2[1], (0, 255, 255), 3)
                cv2.rectangle(third_video, pt1[2], pt2[2], (0, 255, 255), 3)

                crop_image_1 = first_video[pt1[0][1]:pt2[0][1], pt1[0][0]:pt2[0][0]]
                crop_image_2 = second_video[pt1[1][1]:pt2[1][1], pt1[1][0]:pt2[1][0]]
                crop_image_3 = third_video[pt1[2][1]:pt2[2][1], pt1[2][0]:pt2[2][0]]
                crop_image = [crop_image_1, crop_image_2, crop_image_3]
            except:
                print(self.output)
                cap.release()
                cv2.destroyAllWindows()
                sys.exit(0)

            blur_1 = cv2.GaussianBlur(crop_image_1, (3, 3), 0)
            blur_2 = cv2.GaussianBlur(crop_image_2, (3, 3), 0)
            blur_3 = cv2.GaussianBlur(crop_image_3, (3, 3), 0)

            hsv_1 = cv2.cvtColor(blur_1, cv2.COLOR_BGR2HSV)
            hsv_2 = cv2.cvtColor(blur_2, cv2.COLOR_BGR2HSV)
            hsv_3 = cv2.cvtColor(blur_3, cv2.COLOR_BGR2HSV)

            # Create a binary image with where white will be skin colors
            # and rest is black
            lowerb = np.array([0, 0, 0])
            upperb = np.array([12, 255, 255])
            mask_1 = cv2.inRange(hsv_1, lowerb, upperb)
            mask_2 = cv2.inRange(hsv_2, lowerb, upperb)
            mask_3 = cv2.inRange(hsv_3, lowerb, upperb)

            kernel = np.ones((5, 5))

            # Apply morphological transformations to filter out the background noise
            dilation_1 = cv2.dilate(mask_1, kernel, iterations=1)
            dilation_2 = cv2.dilate(mask_2, kernel, iterations=1)
            dilation_3 = cv2.dilate(mask_3, kernel, iterations=1)
            erosion_1 = cv2.erode(dilation_1, kernel, iterations=1)
            erosion_2 = cv2.erode(dilation_2, kernel, iterations=1)
            erosion_3 = cv2.erode(dilation_3, kernel, iterations=1)

            filtered_1 = cv2.GaussianBlur(erosion_1, (3, 3), 0)
            filtered_2 = cv2.GaussianBlur(erosion_2, (3, 3), 0)
            filtered_3 = cv2.GaussianBlur(erosion_3, (3, 3), 0)
            ret_1, thresh_1 = cv2.threshold(filtered_1, self.threshold[0], self.threshold[1], 0)
            ret_2, thresh_2 = cv2.threshold(filtered_2, self.threshold[0], self.threshold[1], 0)
            ret_3, thresh_3 = cv2.threshold(filtered_3, self.threshold[0], self.threshold[1], 0)

            cv2.imshow("Thresholded 1", thresh_1)
            cv2.imshow("Thresholded 2", thresh_2)
            cv2.imshow("Thresholded 3", thresh_3)

            # Find contours
            contours_1, hierarchy_1 = cv2.findContours(thresh_1.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            contours_2, hierarchy_2 = cv2.findContours(thresh_2.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            contours_3, hierarchy_3 = cv2.findContours(thresh_3.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

            try:
                # Find contour with maximum area
                contour_1 = max(contours_1, key=lambda x: cv2.contourArea(x))
                contour_2 = max(contours_2, key=lambda x: cv2.contourArea(x))
                contour_3 = max(contours_3, key=lambda x: cv2.contourArea(x))
                contour = [contour_1, contour_2, contour_3]

                # Create bounding rectangle around the contour
                x_1, y_1, w_1, h_1 = cv2.boundingRect(contour_1)
                x_2, y_2, w_2, h_2 = cv2.boundingRect(contour_2)
                x_3, y_3, w_3, h_3 = cv2.boundingRect(contour_3)
                cv2.rectangle(crop_image_1, (x_1, y_1), (x_1 + w_1, y_1 + h_1), (255, 0, 255), 0)
                cv2.rectangle(crop_image_2, (x_2, y_2), (x_2 + w_2, y_2 + h_2), (255, 0, 255), 0)
                cv2.rectangle(crop_image_3, (x_3, y_3), (x_3 + w_3, y_3 + h_3), (255, 0, 255), 0)

                hull_1 = cv2.convexHull(contour_1)
                hull_2 = cv2.convexHull(contour_2)
                hull_3 = cv2.convexHull(contour_3)

                # Draw contour
                drawing_1 = np.zeros(crop_image_1.shape, np.uint8)
                drawing_2 = np.zeros(crop_image_2.shape, np.uint8)
                drawing_3 = np.zeros(crop_image_3.shape, np.uint8)
                cv2.drawContours(drawing_1, [contour_1], -1, (0, 255, 0), 0)
                cv2.drawContours(drawing_2, [contour_2], -1, (0, 255, 0), 0)
                cv2.drawContours(drawing_3, [contour_3], -1, (0, 255, 0), 0)
                cv2.drawContours(drawing_1, [hull_1], -1, (0, 0, 255), 0)
                cv2.drawContours(drawing_2, [hull_2], -1, (0, 0, 255), 0)
                cv2.drawContours(drawing_2, [hull_3], -1, (0, 0, 255), 0)

                # Find convexity defects
                hull_1 = cv2.convexHull(contour_1, returnPoints=False)
                hull_2 = cv2.convexHull(contour_2, returnPoints=False)
                hull_3 = cv2.convexHull(contour_3, returnPoints=False)
                defects_1 = cv2.convexityDefects(contour_1, hull_1)
                defects_2 = cv2.convexityDefects(contour_2, hull_2)
                defects_3 = cv2.convexityDefects(contour_3, hull_3)
                defects = [defects_1, defects_2, defects_3]

                # Use cosine rule to find the angle of the far point from the start
                # and end point
                count_defects = 0

                for j in range(len(defects)):
                    for i in range(defects[j].shape[0]):
                        contour_temp = contour[j]
                        crop_image_temp = crop_image[j]
                        s, e, f, d = defects[j][i, 0]
                        start = tuple(contour_temp[s][0])
                        end = tuple(contour_temp[e][0])
                        far = tuple(contour_temp[f][0])

                        a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
                        b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
                        cv2.line(crop_image_temp, (start[0], start[1]), (far[0], far[1]), [0, 50, 120], 4)
                        c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
                        cv2.line(crop_image_temp, (far[0], far[1]), (end[0], end[1]), [0, 50, 120], 4)

                        cv2.circle(crop_image_temp, far, 4, [255, 255, 255], -1)

                        angle = (math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) * 180) / math.pi

                        if angle <= 90:
                            count_defects += 1
                            cv2.circle(crop_image_temp, far, 4, [0, 0, 255], -1)


                        cv2.line(crop_image_temp, start, end, [255, 255, 0], 2)

                current_time = time.time() - self.initial_time
                first_three_sec = current_time > 3

                for j in range(len(defects)):

                    cond_delay = current_time > self.gesture_delay[j]

                    # Print the number of fingers applying a delay between gesture
                    if cond_delay and first_three_sec:  # or first_three_sec
                        if count_defects == 0:
                            self.text = "ONE"
                            self.output[str(j)]["one-finger"].append(round(time.time() - self.initial_time, 2))
                            self.gesture_delay[j] = (time.time()-self.initial_time) + 5
                            self.gestures_counter[j] += 1
                        elif count_defects == 1:
                            self.text = "TWO"
                            self.output[str(j)]["two-fingers"].append(round(time.time() - self.initial_time, 2))
                            self.gesture_delay[j] = (time.time()-self.initial_time) + 5
                            self.gestures_counter[j] += 1
                        elif count_defects == 2:
                            self.text = "THREE"
                            self.output[str(j)]["three-fingers"].append(round(time.time() - self.initial_time, 2))
                            self.gesture_delay[j] = (time.time()-self.initial_time) + 5
                            self.gestures_counter[j] += 1

                    #cv2.putText(frame, str(self.gestures_counter[j]) + ": " + self.text, self.text_position[j], cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2)

            except:
                pass

            # Show required images
            cv2.imshow("Gesture", frame)
            out.write(frame)

            if cv2.waitKey(1) == ord('q'):
                break
            elif cv2.waitKey(1) == ord('p'):
                cv2.waitKey(-1)

        cap.release()
        cv2.destroyAllWindows()

        self.return_values()
Esempio n. 37
0
def gestures():
    lowerBound = np.array([110, 150, 0])
    upperBound = np.array([150, 225, 255])

    cap = cv2.VideoCapture(0)
    fgbg = cv2.createBackgroundSubtractorMOG2()

    kernel = np.ones((3, 3), np.uint8)
    while True:
        #capturing a real time video
        ret, frame = cap.read()
        frame = cv2.flip(frame, 1)

        #convert BGR to HSV
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

        # create the Mask
        mask = cv2.inRange(hsv, lowerBound, upperBound)

        #extrapolate the hand to fill dark spots within
        mask1 = cv2.dilate(mask, kernel, iterations=2)

        #combining the original bgr frame with masked frame
        #result = cv2.bitwise_and(frame,frame,mask = mask1)
        #cv2.imshow('frame', frame)
        #cv2.imshow('mask', mask)
        #cv2.imshow('result',result)

        #subtracting background from the frames
        #bgsub = fgbg.apply(mask)
        #cv2.imshow('bgsub', bgsub)

        #edge detection
        #edges = cv2.Canny(mask1,100,200)
        #cv2.imshow('Edges',edges)

        #blur the image
        #blur = cv2.GaussianBlur(edges,(5,5),100)
        #cv2.imshow('blur', blur)

        #find contours
        contours = cv2.findContours(mask1, cv2.RETR_TREE,
                                    cv2.CHAIN_APPROX_SIMPLE)

        contours = imutils.grab_contours(contours)

        max_area = -1
        for i in range(len(contours)):
            cnt = contours[i]
            area = cv2.contourArea(cnt)
            if (area > max_area):
                max_area = area
                ci = i
        cnt = contours[ci]

        cv2.drawContours(frame, [cnt], -1, (0, 255, 255), 2)

        topmost = tuple(cnt[cnt[:, :, 1].argmin()][0])
        bottommost = tuple(cnt[cnt[:, :, 1].argmax()][0])
        leftmost = tuple(cnt[cnt[:, :, 0].argmin()][0])
        rightmost = tuple(cnt[cnt[:, :, 0].argmax()][0])

        cv2.circle(frame, topmost, 8, (0, 255, 0), -1)
        cv2.circle(frame, bottommost, 8, (0, 255, 0), -1)
        cv2.circle(frame, leftmost, 8, (0, 255, 0), -1)
        cv2.circle(frame, rightmost, 8, (0, 255, 0), -1)

        cv2.line(frame, bottommost, topmost, (0, 0, 255), 3)
        cv2.line(frame, bottommost, leftmost, (0, 0, 255), 3)
        cv2.line(frame, bottommost, rightmost, (0, 0, 255), 3)

        x, y, w, h = cv2.boundingRect(cnt)
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 0)
        hull = cv2.convexHull(cnt)
        drawing = np.zeros(frame.shape, np.uint8)
        cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 0)
        cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 0)
        hull = cv2.convexHull(cnt, returnPoints=False)
        defects = cv2.convexityDefects(cnt, hull)
        count_defects = 0
        cv2.drawContours(mask1, contours, -1, (0, 255, 0), 3)
        for i in range(defects.shape[0]):
            s, e, f, d = defects[i, 0]
            start = tuple(cnt[s][0])
            end = tuple(cnt[e][0])
            far = tuple(cnt[f][0])
            a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
            b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
            c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
            angle = math.acos((b**2 + c**2 - a**2) / (2 * b * c)) * 57
            if angle <= 90:
                count_defects += 1
                cv2.circle(frame, far, 1, [0, 0, 255], -1)
            #dist = cv2.pointPolygonTest(cnt,far,True)
            cv2.line(frame, start, end, [0, 255, 0], 2)
        if count_defects == 1:
            cv2.putText(frame, "one", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, 2)
        elif count_defects == 2:
            cv2.putText(frame, "Two", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, 2)
        elif count_defects == 3:
            cv2.putText(frame, "Three", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2,
                        2)
        elif count_defects == 4:
            cv2.putText(frame, "Four", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2,
                        2)
        elif count_defects == 5:
            cv2.putText(frame, "Five", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2,
                        2)
        elif count_defects == 0:
            cv2.putText(frame, "Fist", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2,
                        2)
        else:
            cv2.putText(frame, "no hand detected", (50, 50),
                        cv2.FONT_HERSHEY_SIMPLEX, 2, 2)

        cv2.imshow('frame', frame)
        k = cv2.waitKey(5) & 0xFF
        if k == 27:
            break

    #releasing the resource and destroying all windows
    cap.release()
    cv2.destroyAllWindows()
Esempio n. 38
0
    for i in range(len(contours)):
        cnt = contours[i]
        area = cv2.contourArea(cnt)
        if (area > max_area):
            max_area = area
            ci = i

#Largest area contour
    cnts = contours[ci]

    #Find convex hull
    hull = cv2.convexHull(cnts)

    #Find convex defects
    hull2 = cv2.convexHull(cnts, returnPoints=False)
    defects = cv2.convexityDefects(cnts, hull2)

    #Get defect points and draw them in the original image
    FarDefect = []
    for i in range(defects.shape[0]):
        s, e, f, d = defects[i, 0]
        start = tuple(cnts[s][0])
        end = tuple(cnts[e][0])
        far = tuple(cnts[f][0])
        FarDefect.append(far)
        cv2.line(frame, start, end, [0, 255, 0], 1)
        cv2.circle(frame, far, 10, [100, 255, 255], 3)

#Find moments of the largest contour
    moments = cv2.moments(cnts)
Esempio n. 39
0
        bigboi = max(contours, key=cv2.contourArea)
        cv2.drawContours(frame, [bigboi], -1, (0, 255, 0), 3)
        hull = cv2.convexHull(bigboi)
        cv2.drawContours(frame, [hull], -1, (255, 0, 255), 3)

        # print(hull)
        # for h in hull:
        #     try:
        #         x = h[0][0]
        #         y = h[0][1]
        #         print("x: ", x, "y: ", y)
        #         cv2.circle(frame, (x, y), 3, (40, 10, 40), -1)
        #     except:
        #         pass

        defects = cv2.convexityDefects(bigboi, cv2.convexHull(bigboi, returnPoints=False))
        num_defect = 0
        for i in range(defects.shape[0]):
            s, e, f, d = defects[i, 0]

            start = tuple(bigboi[s][0])
            end = tuple(bigboi[e][0])
            far = tuple(bigboi[f][0])

            a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
            b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
            c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)

            angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) * 57

            if angle <= 60:
Esempio n. 40
0
        area = cv2.contourArea(cnt)
        if area > max_area:
            max_area = area
            ci = i
    cnt = contours[ci]
    x, y, w, h = cv2.boundingRect(cnt)
    cv2.rectangle(crop_img, (x, y), (x + w, y + h), (0, 0, 255), 0)
    hull = cv2.convexHull(cnt)
    drawing = np.zeros(crop_img.shape, np.uint8)
    cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 0)
    cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 0)

    # to construct a convex hull of given coordinates
    hull = cv2.convexHull(cnt, returnPoints=False)

    defects = cv2.convexityDefects(cnt, hull)
    count_defects = 0
    cv2.drawContours(thresh1, contours, -1, (0, 255, 0), 3)

    used_defect = None
    for i in range(defects.shape[0]):
        s, e, f, d = defects[i, 0]
        start = tuple(cnt[s][0])
        end = tuple(cnt[e][0])
        far = tuple(cnt[f][0])

        # importing math library using maths function
        a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
        b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
        c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
        angle = math.acos((b**2 + c**2 - a**2) / (2 * b * c)) * 57
Esempio n. 41
0
def main():

    UDP_IP = "127.0.0.1"
    ####HAND
    UDP_HAND_PORT = 5070

    SHOTS_PER_SECOND = 0.5
    SHOOT_WAIT_TIME = False

    POWER_ACTIVE_TIME = 5.0
    POWER_WAIT_TIME = 5.0
    POWER_ENABLED = False
    POWER_WAIT_ENABLED = False

    power_start_time = 0
    power_start_wait_time = 0

    print("UDP target IP:", UDP_IP)
    print("UDP hand target port:", UDP_HAND_PORT)

    sock = socket.socket(
        socket.AF_INET,  # Internet
        socket.SOCK_DGRAM)  # UDP

    video_font = 'http://192.168.1.136:4747/video'
    cap = cv2.VideoCapture(video_font)

    screenColor = ScreenColor(cap, "yellow", sock)

    # recieve from unity

    sock_recieve = threading.Thread(target=screenColor.recv_socket)
    sock_recieve.start()

    #cap = cv2.VideoCapture(0)
    while (cap.isOpened()):
        ret, img = cap.read()
        cv2.rectangle(img, (200, 150), (50, 300), (0, 255, 0), 0)
        crop_img = img[150:300, 50:200]
        grey = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY)
        value = (35, 35)
        blurred = cv2.GaussianBlur(grey, value, 0)
        _, thresh1 = cv2.threshold(blurred, 127, 255,
                                   cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
        cv2.imshow('Thresholded', thresh1)
        contours, hierarchy = cv2.findContours(thresh1.copy(),cv2.RETR_TREE, \
                cv2.CHAIN_APPROX_NONE)
        max_area = -1
        for i in range(len(contours)):
            cnt = contours[i]
            area = cv2.contourArea(cnt)
            if (area > max_area):
                max_area = area
                ci = i
        cnt = contours[ci]
        x, y, w, h = cv2.boundingRect(cnt)
        cv2.rectangle(crop_img, (x, y), (x + w, y + h), (0, 0, 255), 0)
        hull = cv2.convexHull(cnt)
        drawing = np.zeros(crop_img.shape, np.uint8)
        cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 0)
        cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 0)
        hull = cv2.convexHull(cnt, returnPoints=False)
        defects = cv2.convexityDefects(cnt, hull)
        count_defects = 0
        cv2.drawContours(thresh1, contours, -1, (0, 255, 0), 3)

        try:
            ans = len(defects.shape) >= 0
        except:
            ans = 0

        if not ans:
            continue

        for i in range(defects.shape[0]):
            s, e, f, d = defects[i, 0]
            start = tuple(cnt[s][0])
            end = tuple(cnt[e][0])
            far = tuple(cnt[f][0])
            a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
            b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
            c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
            angle = math.acos((b**2 + c**2 - a**2) / (2 * b * c)) * 57
            if angle <= 90:
                count_defects += 1
                cv2.circle(crop_img, far, 1, [0, 0, 255], -1)
            #dist = cv2.pointPolygonTest(cnt,far,True)
            cv2.line(crop_img, start, end, [0, 255, 0], 2)
            #cv2.circle(crop_img,far,5,[0,0,255],-1)

        if count_defects >= 4:
            cv2.putText(img, "DISPARAAAA", (50, 50), cv2.FONT_HERSHEY_SIMPLEX,
                        2, 2)

            if not SHOOT_WAIT_TIME:  #shoot wait not activated
                start_time = time.perf_counter()
                SHOOT_WAIT_TIME = True
                info = "100"
            else:  #shoot wait activated
                end_time = time.perf_counter()
                if (end_time -
                        start_time) >= SHOTS_PER_SECOND:  #can shoot again
                    SHOOT_WAIT_TIME = False
                else:
                    info = "0"

        else:
            cv2.putText(img, "NO HACER NADA", (50, 50),
                        cv2.FONT_HERSHEY_SIMPLEX, 2, 2)
            info = "0"

        #print("Info", info)
        send_socket(info, sock, UDP_IP, UDP_HAND_PORT)
        #cv2.imshow('drawing', drawing)
        #cv2.imshow('end', crop_img)
        #cv2.imshow('Gesture', img)
        all_img = np.hstack((drawing, crop_img))
        cv2.imshow('Contours', all_img)
        k = cv2.waitKey(10)
        if k == 27:
            break

        if not POWER_ENABLED:
            cv2.putText(img, "NO PODER", (250, 250), cv2.FONT_HERSHEY_SIMPLEX,
                        2, 2)
        elif POWER_WAIT_ENABLED:
            cv2.putText(img, "NO SE PUEDE ACTIVAR PODER", (250, 250),
                        cv2.FONT_HERSHEY_SIMPEX, 2, 2)
        else:
            cv2.putText(img, "PODER", (250, 250), cv2.FONT_HERSHEY_SIMPLEX, 2,
                        2)

        #### SCREEN COLOR #####

        screenColor.loop(img)

        if screenColor.activate_power():
            if not POWER_WAIT_ENABLED and not POWER_ENABLED:  # can use power
                power_start_time = time.perf_counter()
                POWER_ENABLED = True
                cv2.putText(img, "PODER", (250, 250), cv2.FONT_HERSHEY_SIMPLEX,
                            2, 2)
                SHOTS_PER_SECOND = 0.25
                info = "400"  # Power IS activated
                send_socket(info, sock, UDP_IP, UDP_HAND_PORT)

        # Check power duration
        power_end_time = time.perf_counter()
        if (POWER_ENABLED and int(power_start_time) != 0
                and (power_end_time - power_start_time) >=
                POWER_ACTIVE_TIME):  # power over
            POWER_ENABLED = False
            SHOTS_PER_SECOND = 0.5
            info = "200"  # Cant activate power
            send_socket(info, sock, UDP_IP, UDP_HAND_PORT)
            POWER_WAIT_ENABLED = True
            power_start_wait_time = time.perf_counter()

        # Enable Power
        if POWER_WAIT_ENABLED:
            # Check if power can be enabled
            power_end_wait_time = time.perf_counter()
            if (power_end_wait_time -
                    power_start_wait_time) >= POWER_WAIT_TIME:
                POWER_WAIT_ENABLED = False
                info = "300"  # Can activate power
                send_socket(info, sock, UDP_IP, UDP_HAND_PORT)
Esempio n. 42
0
        # Tạo hình chữ nhật giới hạn xung quanh đường viền
        x, y, w, h = cv2.boundingRect(contour)
        cv2.rectangle(crop_image, (x, y), (x + w, y + h), (0, 0, 255), 0)

        # Tìm vỏ lồi
        hull = cv2.convexHull(contour)

        # Vẽ đường viền
        drawing = np.zeros(crop_image.shape, np.uint8)
        cv2.drawContours(drawing, [contour], -1, (0, 255, 0), 0)
        cv2.drawContours(drawing, [hull], -1, (0, 0, 255), 0)

        # Khiếm khuyết lồi Fi
        hull = cv2.convexHull(contour, returnPoints=False)
        defects = cv2.convexityDefects(contour, hull)

        # Sử dụng quy tắc cosine để tìm góc của điểm xa từ điểm bắt đầu và điểm kết thúc, tức là các điểm lồi (ngón tay
        count_defects = 0

        for i in range(defects.shape[0]):
            s, e, f, d = defects[i, 0]
            start = tuple(contour[s][0])
            end = tuple(contour[e][0])
            far = tuple(contour[f][0])

            a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
            b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
            c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
            angle = (math.acos(
                (b**2 + c**2 - a**2) / (2 * b * c)) * 180) / 3.14
def convex_hull(frame_1, frame):

    frame = cv2.GaussianBlur(frame, (5, 5), 100)
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    ret, thresh = cv2.threshold(frame, 30, 255, cv2.THRESH_BINARY)
    contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE,
                                           cv2.CHAIN_APPROX_SIMPLE)
    cnt = max(contours, key=lambda x: cv2.contourArea(x))
    epsilon = 0.0005 * cv2.arcLength(cnt, True)
    approx = cv2.approxPolyDP(cnt, epsilon, True)
    hull = cv2.convexHull(cnt)
    areahull = cv2.contourArea(hull)
    areacnt = cv2.contourArea(cnt)
    arearatio = ((areahull - areacnt) / areacnt) * 100
    hull = cv2.convexHull(approx, returnPoints=False)
    defects = cv2.convexityDefects(approx, hull)

    l = 0
    frame_x = frame_1.copy()
    for i in range(defects.shape[0]):
        s, e, f, d = defects[i, 0]
        start = tuple(approx[s][0])
        end = tuple(approx[e][0])
        far = tuple(approx[f][0])
        pt = (100, 180)

        # find length of all sides of triangle
        a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
        b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
        c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
        s = (a + b + c) / 2
        ar = math.sqrt(s * (s - a) * (s - b) * (s - c))

        #distance between point and convex hull
        d = (2 * ar) / a

        # apply cosine rule here
        angle = math.acos((b**2 + c**2 - a**2) / (2 * b * c)) * 57

        # ignore angles > 90 and ignore points very close to convex hull(they generally come due to noise)
        if angle <= 90 and d > 30:
            l += 1
            cv2.circle(frame_x, far, 3, [255, 0, 0], -1)

        #draw lines around hand
        cv2.line(frame_x, start, end, [0, 255, 0], 2)

    l += 1

    font = cv2.FONT_HERSHEY_SIMPLEX
    if l == 1:
        if areacnt < 2000:
            cv2.putText(frame_x, 'Put hand in the box', (0, 50), font, 2,
                        (0, 0, 255), 3, cv2.LINE_AA)
        else:
            if arearatio < 12:
                cv2.putText(frame_x, '0', (0, 50), font, 2, (0, 0, 255), 3,
                            cv2.LINE_AA)
            elif arearatio < 17.5:
                cv2.putText(frame_x, 'Best of luck', (0, 50), font, 2,
                            (0, 0, 255), 3, cv2.LINE_AA)

            else:
                cv2.putText(frame_x, '1', (0, 50), font, 2, (0, 0, 255), 3,
                            cv2.LINE_AA)

    elif l == 2:
        cv2.putText(frame_x, '2', (0, 50), font, 2, (0, 0, 255), 3,
                    cv2.LINE_AA)

    elif l == 3:

        if arearatio < 27:
            cv2.putText(frame_x, '3', (0, 50), font, 2, (0, 0, 255), 3,
                        cv2.LINE_AA)
        else:
            cv2.putText(frame_x, 'ok', (0, 50), font, 2, (0, 0, 255), 3,
                        cv2.LINE_AA)

    elif l == 4:
        cv2.putText(frame_x, '4', (0, 50), font, 2, (0, 0, 255), 3,
                    cv2.LINE_AA)

    elif l == 5:
        cv2.putText(frame_x, '5', (0, 50), font, 2, (0, 0, 255), 3,
                    cv2.LINE_AA)

    elif l == 6:
        cv2.putText(frame_x, 'reposition', (0, 50), font, 2, (0, 0, 255), 3,
                    cv2.LINE_AA)

    else:
        cv2.putText(frame_x, 'reposition', (10, 50), font, 2, (0, 0, 255), 3,
                    cv2.LINE_AA)

    return frame_x
Esempio n. 44
0
def dedoscamp():
    cap = cv2.VideoCapture(0)
    bg = None

    while True:
        ret, frame = cap.read()
        if ret == False:
            break

        # Redimensionar la imagen para que tenga un ancho de 640
        frame = imutils.resize(frame, width=640)
        frame = cv2.flip(frame, 1)
        frameAux = frame.copy()

        if bg is not None:

            # Determinar la región de interés
            ROI = frame[50:300, 380:600]
            cv2.rectangle(frame, (380 - 2, 50 - 2), (600 + 2, 300 + 2),
                          color_dedos, 1)
            grayROI = cv2.cvtColor(ROI, cv2.COLOR_BGR2GRAY)

            # Región de interés del fondo de la imagen
            bgROI = bg[50:300, 380:600]

            # Determinar la imagen binaria (background vs foreground)
            dif = cv2.absdiff(grayROI, bgROI)
            _, th = cv2.threshold(dif, 30, 255, cv2.THRESH_BINARY)
            th = cv2.medianBlur(th, 7)

            # Encontrando los contornos de la imagen binaria
            cnts, _ = cv2.findContours(th, cv2.RETR_EXTERNAL,
                                       cv2.CHAIN_APPROX_SIMPLE)
            cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:1]

            for cnt in cnts:

                # Encontrar el centro del contorno
                M = cv2.moments(cnt)
                if M["m00"] == 0:
                    M["m00"] = 1
                x = int(M["m10"] / M["m00"])
                y = int(M["m01"] / M["m00"])
                cv2.circle(ROI, tuple([x, y]), 5, (0, 255, 0), -1)

                # Punto más alto del contorno
                ymin = cnt.min(axis=1)
                cv2.circle(ROI, tuple(ymin[0]), 5, color_ymin, -1)

                # Contorno encontrado a través de cv2.convexHull
                hull1 = cv2.convexHull(cnt)
                cv2.drawContours(ROI, [hull1], 0, color_contorno, 2)

                # Defectos convexos
                hull2 = cv2.convexHull(cnt, returnPoints=False)
                defects = cv2.convexityDefects(cnt, hull2)

                # Seguimos con la condición si es que existen defectos convexos
                if defects is not None:

                    inicio = [
                    ]  # Contenedor en donde se almacenarán los puntos iniciales de los defectos convexos
                    fin = [
                    ]  # Contenedor en donde se almacenarán los puntos finales de los defectos convexos
                    dedos = 0  # Contador para el número de dedos levantados

                    for i in range(defects.shape[0]):

                        s, e, f, d = defects[i, 0]
                        start = cnt[s][0]
                        end = cnt[e][0]
                        far = cnt[f][0]

                        # Encontrar el triángulo asociado a cada defecto convexo para determinar ángulo
                        a = np.linalg.norm(far - end)
                        b = np.linalg.norm(far - start)
                        c = np.linalg.norm(start - end)

                        angulo = np.arccos(
                            (np.power(a, 2) + np.power(b, 2) - np.power(c, 2))
                            / (2 * a * b))
                        angulo = np.degrees(angulo)
                        angulo = int(angulo)

                        # Se descartarán los defectos convexos encontrados de acuerdo a la distnacia
                        # entre los puntos inicial, final y más alelago, por el ángulo y d
                        if np.linalg.norm(start - end
                                          ) > 20 and angulo < 90 and d > 12000:

                            # Almacenamos todos los puntos iniciales y finales que han sido
                            # obtenidos
                            inicio.append(start)
                            fin.append(end)

                            # Visualización de distintos datos obtenidos

                            cv2.circle(ROI, tuple(start), 5, color_comienzo, 2)
                            cv2.circle(ROI, tuple(end), 5, color_terminacion,
                                       2)
                            cv2.circle(ROI, tuple(far), 7, color_far, -1)

                    # Si no se han almacenado puntos de inicio (o fin), puede tratarse de
                    # 0 dedos levantados o 1 dedo levantado
                    if len(inicio) == 0:
                        minY = np.linalg.norm(ymin[0] - [x, y])
                        if minY >= 110:
                            dedos = dedos + 1
                            cv2.putText(ROI, '{}'.format(dedos),
                                        tuple(ymin[0]), 1, 1.7, (color_dedos),
                                        1, cv2.LINE_AA)

                    # Si se han almacenado puntos de inicio, se contará el número de dedos levantados
                    for i in range(len(inicio)):
                        dedos = dedos + 1
                        cv2.putText(ROI, '{}'.format(dedos), tuple(inicio[i]),
                                    1, 1.7, (color_dedos), 1, cv2.LINE_AA)
                        if i == len(inicio) - 1:
                            dedos = dedos + 1
                            cv2.putText(ROI, '{}'.format(dedos), tuple(fin[i]),
                                        1, 1.7, (color_dedos), 1, cv2.LINE_AA)

                    # Se visualiza el número de dedos levantados en el rectángulo izquierdo
                    cv2.putText(frame, '{}'.format(dedos), (390, 45), 1, 4,
                                (color_dedos), 2, cv2.LINE_AA)

                    if dedos != 0:
                        if dedos == 1:
                            rigth = True
                            left = False
                            down = False
                            up = False
                            action = False
                        if dedos == 2:
                            rigth = False
                            left = True
                            down = False
                            up = False
                            action = False
                        if dedos == 3:
                            rigth = False
                            left = False
                            down = True
                            up = False
                            action = False
                        if dedos == 4:
                            rigth = False
                            left = False
                            down = False
                            up = True
                            action = False
                        if dedos == 5:
                            rigth = False
                            left = False
                            down = False
                            up = False
                            action = True

                    print(rigth)
                    print(left)
                    print(down)
                    print(up)
                    print(action)

            cv2.imshow('th', th)
        cv2.imshow('Frame', frame)

        k = cv2.waitKey(20)
        if k == ord('i'):
            bg = cv2.cvtColor(frameAux, cv2.COLOR_BGR2GRAY)
        if k == 27:
            break

    cap.release()
    cv2.destroyAllWindows()
Esempio n. 45
0
def extractDefects(contour, hull):
    return cv2.convexityDefects(contour, hull)
Esempio n. 46
0
def main():
    #subprocess.Popen(["bash", "ultimate.sh"])

    pygame.init()
    song = pygame.mixer.Sound('A.wav')
    clock = pygame.time.Clock()

    sound_tick = 0

    var_A = 0

    # Testing Bash Script in python

    # subprocess.call("test_bash.sh")

    def createFile(dest):
        name = letter_correspond
        if not(path.isfile(dest + name)):
            f = open(dest + name, 'w')
            f.write('\n'*5)
            f.close()

    co_ordinates_for_CONVEX_HULL = [[]]
    abc = []

    font = cv2.FONT_HERSHEY_SIMPLEX
    put_text_color = (18, 0, 255)
    put_text_pos = (60, 50)

    lower_thresh1 = 129
    upper_thresh1 = 255

    j = 0
    PI = math.pi

    """img_test = cv2.imread("1.jpg",0)
	ret_1,thresh_test = cv2.threshold(img_test,125,255,0)
	xyz_test,contours_test,hierarchy_test = cv2.findContours(thresh_test,2,1)
	cnt_test_yo = [4]
	ret_1 = cv2.matchShapes(cnt_test_yo,cnt,1,0.0)
	print ret_1"""

    #letter_I_match_shape = cv2.imread('I.jpg',0)

    camera_index = int(sys.argv[1])
    cap = cv2.VideoCapture(camera_index)

    while(cap.isOpened()):

        img_dofh = cv2.imread("D.png", 0)
        ret, img = cap.read()
        cv2.rectangle(img, (60, 60), (300, 300),
                      (255, 255, 2), 4)  # outer most rectangle
        crop_img = img[70:300, 70:300]
        crop_img_2 = img[70:300, 70:300]

        grey = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY)

        #edges = cv2.Canny(crop_img,100,200)

        # Corners Detection

        hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

        lower_red = np.array([0, 150, 50])

        upper_red = np.array([195, 255, 255])

        mask = cv2.inRange(hsv, lower_red, upper_red)
        res = cv2.bitwise_and(img, img, mask=mask)

        value = (35, 35)
        blurred = cv2.GaussianBlur(grey, value, 0)
        _, thresh1 = cv2.threshold(
            blurred, lower_thresh1, upper_thresh1, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
        _, thresh_dofh = cv2.threshold(
            img_dofh, lower_thresh1, upper_thresh1, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
        #defrt,thresh_for_I = cv2.threshold(letter_I_match_shape,125,255,0)

        contours, hierarchy = cv2.findContours(
            thresh1.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
        contours_dofh, hierarchy_dofh = cv2.findContours(
            thresh_dofh, 2, 1)
        #cnt_dofh = contours_dofh[1]

        cnt = max(contours, key=lambda x: cv2.contourArea(x))
        #cnt_m = contours[0]
        # print cnt_m
        area_of_contour = cv2.contourArea(cnt)

        x, y, w, h = cv2.boundingRect(cnt)
        cv2.rectangle(crop_img, (x, y), (x+w, y+h),
                      (0, 0, 255), 1)  # Red Rectangle
        #ratio_of_red_rect = h/w
        # print ratio_of_red_rect

        hull = cv2.convexHull(cnt)
        drawing = np.zeros(crop_img.shape, np.uint8)

        cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 0)
        cv2.drawContours(drawing, [hull], 0, (0, 255, 255), 0)

        hull = cv2.convexHull(cnt, returnPoints=False)
        #co_ordinates_for_CONVEX_HULL = cv2.convexHull(cnt,returnPoints = True)
        defects = cv2.convexityDefects(cnt, hull)

        count_defects = 0
        cv2.drawContours(thresh1, contours, -1, (0, 255, 0), 3)

        for i in range(defects.shape[0]):
            s, e, f, d = defects[i, 0]
            start = tuple(cnt[s][0])
            end = tuple(cnt[e][0])
            far = tuple(cnt[f][0])

            a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
            b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
            c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)

            angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 60
            # Red Circles###########################3
            cv2.circle(crop_img, far, 4, [0, 0, 255], -1)
            # cv2.line(crop_img,start,end,[255,255,0],2)

            if angle <= 90:
                count_defects += 1
                #yeyo = cv2.circle(crop_img,far,1,[255,0,0],-1)

            cv2.line(crop_img, start, end, [0, 255, 0], 3)

        moment = cv2.moments(cnt)
        perimeter = cv2.arcLength(cnt, True)
        area = cv2.contourArea(cnt)

        (x, y), radius = cv2.minEnclosingCircle(cnt)
        center = (int(x), int(y))
        radius = int(radius)
        cv2.circle(crop_img, center, radius, (255, 0, 0), 2)

        area_of_circle = PI*radius*radius

        hull_test = cv2.convexHull(cnt)
        hull_area = cv2.contourArea(hull_test)
        solidity = float(area)/hull_area

        aspect_ratio = float(w)/h

        rect_area = w*h
        extent = float(area)/rect_area

        (x, y), (MA, ma), angle_t = cv2.fitEllipse(cnt)

        #ret_1 = cv2.matchShapes(cnt,contours_dofh,1,0.0)
        # print ret_1

        if area_of_circle - area < 5000:

            letter_correspond = "A.txt"

            destination = 'Letters_stash_for_sounds/'
            createFile(destination)
            # raw_input("done!!!")

            output = "A"
            outFile = open('Letters_stash_for_sounds/A.txt', 'w')
            outFile.write(output)

            cv2.putText(img, "The Letter is :  A (CALIBRATED)",
                        put_text_pos, font, 1, put_text_color, 2, cv2.LINE_AA)
            #cv2.putText(img, "The letter is :", (60,50), font, 1 , put_text_color, 2, cv2.LINE_AA)
            #cv2.putText(img, "A", (320,55), font, 2 , (50,100,190), 3, cv2.LINE_AA)

        elif count_defects == 1:

            if angle_t < 10:

                letter_correspond = "V.txt"

                destination = 'Letters_stash_for_sounds/'
                createFile(destination)
                # raw_input("done!!!")

                output = "V"
                outFile = open('Letters_stash_for_sounds/V.txt', 'w')
                outFile.write(output)

                #letter_correspond = "V.txt"

                cv2.putText(img, "The Letter is :  V", put_text_pos,
                            font, 1, put_text_color, 2, cv2.LINE_AA)

            elif 40 < angle_t < 66:

                letter_correspond = "C.txt"

                destination = 'Letters_stash_for_sounds/'
                createFile(destination)
                # raw_input("done!!!")

                output = "C"
                outFile = open('Letters_stash_for_sounds/C.txt', 'w')
                outFile.write(output)

                cv2.putText(img, "The Letter is :   C", put_text_pos,
                            font, 1, put_text_color, 2, cv2.LINE_AA)

            elif 20 < angle_t < 35:

                letter_correspond = "L.txt"

                destination = 'Letters_stash_for_sounds/'
                createFile(destination)
                # raw_input("done!!!")

                output = "L"
                outFile = open('Letters_stash_for_sounds/L.txt', 'w')
                outFile.write(output)

                cv2.putText(img, "The Letter is :   L", put_text_pos,
                            font, 1, put_text_color, 2, cv2.LINE_AA)

            else:

                letter_correspond = "Y.txt"

                destination = 'Letters_stash_for_sounds/'
                createFile(destination)
                # raw_input("done!!!")

                output = "Y"
                outFile = open('Letters_stash_for_sounds/Y.txt', 'w')
                outFile.write(output)

                cv2.putText(img, "The Letter is :  Y", put_text_pos,
                            font, 1, put_text_color, 2, cv2.LINE_AA)

            # print "Its 2"
        elif count_defects == 2:  # Its either W or F

            if angle_t > 100:

                letter_correspond = "F.txt"

                destination = 'Letters_stash_for_sounds/'
                createFile(destination)
                # raw_input("done!!!")

                output = "F"
                outFile = open('Letters_stash_for_sounds/F.txt', 'w')
                outFile.write(output)

                cv2.putText(img, "The Letter is :  F", put_text_pos,
                            font, 1, put_text_color, 2, cv2.LINE_AA)

            else:

                letter_correspond = "W.txt"

                destination = 'Letters_stash_for_sounds/'
                createFile(destination)
                # raw_input("done!!!")

                output = "W"
                outFile = open('Letters_stash_for_sounds/W.txt', 'w')
                outFile.write(output)

                cv2.putText(img, "The Letter is :  W", put_text_pos,
                            font, 1, put_text_color, 2, cv2.LINE_AA)

        elif count_defects == 4:

            letter_correspond = "CALIBRATE.txt"

            destination = 'Letters_stash_for_sounds/'
            createFile(destination)
            # raw_input("done!!!")

            output = "CALIBRATE"
            outFile = open('Letters_stash_for_sounds/CALIBRATE.txt', 'w')
            outFile.write(output)

            cv2.putText(img, "Hello There ! Callibrate by letter A",
                        put_text_pos, font, 1, put_text_color, 2, cv2.LINE_AA)

        else:
            if area > 12000:

                letter_correspond = " B.txt"

                destination = 'Letters_stash_for_sounds/'
                createFile(destination)
                # raw_input("done!!!")

                output = "B"
                outFile = open('Letters_stash_for_sounds/B.txt', 'w')
                outFile.write(output)

                cv2.putText(img, "The Letter is :  B", put_text_pos,
                            font, 1, put_text_color, 2, cv2.LINE_AA)

            else:

                if solidity < 0.85:

                    if aspect_ratio < 1:

                        if angle_t < 20:

                            letter_correspond = " D.txt"

                            destination = 'Letters_stash_for_sounds/'
                            createFile(destination)
                            # raw_input("done!!!")

                            output = "D"
                            outFile = open(
                                'Letters_stash_for_sounds/D.txt', 'w')
                            outFile.write(output)

                            cv2.putText(img, "The Letter is :  D", put_text_pos,
                                        font, 1, put_text_color, 2, cv2.LINE_AA)

                        elif 169 < angle_t < 180:

                            letter_correspond = " I.txt"

                            destination = 'Letters_stash_for_sounds/'
                            createFile(destination)
                            # raw_input("done!!!")

                            output = "I"
                            outFile = open(
                                'Letters_stash_for_sounds/I.txt', 'w')
                            outFile.write(output)

                            cv2.putText(img, "The Letter is :  I", put_text_pos,
                                        font, 1, put_text_color, 2, cv2.LINE_AA)

                        elif angle_t < 168:

                            letter_correspond = " J.txt"

                            destination = 'Letters_stash_for_sounds/'
                            createFile(destination)
                            # raw_input("done!!!")

                            output = "J"
                            outFile = open(
                                'Letters_stash_for_sounds/J.txt', 'w')
                            outFile.write(output)

                            cv2.putText(img, "The Letter is :  J", put_text_pos,
                                        font, 1, put_text_color, 2, cv2.LINE_AA)

                    elif aspect_ratio > 1.01:

                        letter_correspond = " Y.txt"

                        destination = 'Letters_stash_for_sounds/'
                        createFile(destination)
                        # raw_input("done!!!")

                        output = "Y"
                        outFile = open('Letters_stash_for_sounds/Y.txt', 'w')
                        outFile.write(output)

                        cv2.putText(img, "The Letter is :  Y", put_text_pos,
                                    font, 1, put_text_color, 2, cv2.LINE_AA)

                else:

                    if angle_t > 30 and angle_t < 100:

                        letter_correspond = " H.txt"

                        destination = 'Letters_stash_for_sounds/'
                        createFile(destination)
                        # raw_input("done!!!")

                        output = "H"
                        outFile = open('Letters_stash_for_sounds/H.txt', 'w')
                        outFile.write(output)

                        cv2.putText(img, "The Letter is :  H", put_text_pos,
                                    font, 1, put_text_color, 2, cv2.LINE_AA)

                    elif angle_t > 120:

                        letter_correspond = " I.txt"

                        destination = 'Letters_stash_for_sounds/'
                        createFile(destination)
                        # raw_input("done!!!")

                        output = "I"
                        outFile = open('Letters_stash_for_sounds/I.txt', 'w')
                        outFile.write(output)

                        cv2.putText(img, "The Letter is :  I", put_text_pos,
                                    font, 1, put_text_color, 2, cv2.LINE_AA)

                    else:

                        letter_correspond = " U.txt"

                        destination = 'Letters_stash_for_sounds/'
                        createFile(destination)
                        # raw_input("done!!!")

                        output = "U"
                        outFile = open('Letters_stash_for_sounds/U.txt', 'w')
                        outFile.write(output)

                        cv2.putText(img, "The Letter is :  U", put_text_pos,
                                    font, 1, put_text_color, 2, cv2.LINE_AA)

        # crop_img[dst>0.01*dst.max()]=[255,0,0]
        cv2.imshow('Gesture', img)
        cv2.imshow('Contours', drawing)
        cv2.imshow('Defects', crop_img)
        cv2.imshow('Binary Image', thresh1)

        # Testing Parameters :

        # print co_ordinates_for_CONVEX_HULL
        # print abc
        # cv2.imshow('something',yeyo)
        # print area_of_contour,co_ordinates_for_CONVEX_HULL
        # print moment
        print("Perimeter is :", perimeter)
        # print "The area is:", area
        # print defects
        # print crop_img.shape
        # print defects.shape
        # print dist_from_farthest
        # print count_defectsd
        # print hull
        # print far
        # print equi_diameter
        print('Radius:', PI*radius*radius, "Area:", area)
        print(area_of_circle - area)
        print("The solidity is:", solidity)
        print("The aspect ratio is :", aspect_ratio)
        print("The number of convexity defects are :", count_defects)
        print("The extent is :", extent)
        print("the angle is:", angle_t)
        print('\033[91m'+"The area of effective circle is " + '\033[0m', area_of_circle - area)

        """
	    img1 = cv2.imread('match_shapes_test.png',0)
	    #img2 = cv2.imread(thresh1,0)

	    ret, thresh_8 = cv2.threshold(img1, 127, 255,0)
	    ret, thresh_9 = cv2.threshold(thresh1, 127, 255,0)
	    xcv,contours_8,hierarchy = cv2.findContours(thresh_8,2,1)
	    cnt1 = contours_8[0]
	    vbgf,contours_9,hierarchy = cv2.findContours(thresh_9,2,1)
	    cnt_9 = max(contours_9, key = lambda s: cv2.contourArea(s))

	    ret = cv2.matchShapes(cnt1,cnt_9,1,0.0)
	    print "The probability is :",ret """

        k = cv2.waitKey(10) & 0xFF

        # if k == ord('s'):
        #    cv2.imwrite('testing_match.png',crop_img_2)

        if k == ord('s'):

            os.system(
                "gnome-terminal -e 'bash -c \"bash ultimate.sh; exec bash\"'")
            pid = os.getpid()

        elif k == 27 or k == ord('q'):

            break
Esempio n. 47
0
 def getConvexHull(self):
     hullPoints = cv2.convexHull(self.mainContour)
     hull = cv2.convexHull(self.mainContour, hullPoints, False, False)
     defects = cv2.convexityDefects(self.mainContour, hull.flatten())
     return hullPoints, hull, defects
Esempio n. 48
0
def PiGestureDetect():
    camera = PiCamera()
    camera.resolution = (640, 480)
    camera.framerate = 15
    camera.vflip = True

    rawCapture = PiRGBArray(camera, size=(640, 480))

    fgbg = cv2.createBackgroundSubtractorMOG2(varThreshold=80,
                                              detectShadows=False)

    while camera.analog_gain <= 1:
        time.sleep(0.1)
    camera.shutter_speed = camera.exposure_speed
    camera.exposure_mode = 'off'
    g = camera.awb_gains
    camera.awb_mode = 'off'
    camera.awb_gains = g

    camera.capture(rawCapture, format="bgr")
    img_background = rawCapture.array
    rawCapture.truncate(0)

    for frame in camera.capture_continuous(rawCapture,
                                           format="bgr",
                                           use_video_port=True):
        image = frame.array

        #Color segmentation:
        #gray_image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
        #blur = cv2.GaussianBlur(gray_image,(5,5),0)
        #ret,thresh = cv2.threshold(blur,70,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

        #hsv_image = cv2.cvtColor(image,cv2.COLOR_BGR2HSV)
        #thresh = cv2.inRange(hsv_image, (0,0.28*255,0), (25,0.68*255,255))

        fgmask = fgbg.apply(image, learningRate=0.001)
        fgmask = cv2.medianBlur(fgmask, 7)

        thresh, contours, hierarchy = cv2.findContours(fgmask, cv2.RETR_TREE,
                                                       cv2.CHAIN_APPROX_SIMPLE)
        drawing = np.zeros(image.shape, np.uint8)
        max_area = 0
        ci = -1

        for i in range(len(contours)):
            cnt = contours[i]
            area = cv2.contourArea(cnt)
            if (area > max_area):
                max_area = area
                ci = i

        if contours and ci >= 0:
            cnt = contours[ci]
            hull = cv2.convexHull(cnt)
            moments = cv2.moments(cnt)
            if moments['m00'] != 0:
                cx = int(moments['m10'] / moments['m00'])
                cy = int(moments['m01'] / moments['m00'])
            centr = (cx, cy)
            cv2.circle(image, centr, 5, [0, 0, 255], 2)

            #cv2.drawContours(drawing,[cnt],0,(0,255,0),2)
            #cv2.drawContours(drawing,[hull],0,(0,0,255),2)

            cnt = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
            hull = cv2.convexHull(cnt, returnPoints=False)

            defects = cv2.convexityDefects(cnt, hull)
            if defects is not None:
                for j in range(defects.shape[0]):
                    s, e, f, d = defects[j, 0]
                    start = tuple(cnt[s][0])
                    end = tuple(cnt[e][0])
                    far = tuple(cnt[f][0])

                    cv2.line(image, start, end, [0, 255, 0], 2)
                    cv2.circle(image, far, 5, [0, 0, 255], -1)

                if j >= 4 and cv2.contourArea(cnt) > 30000:
                    socket.send_string("detected")
                    msg = socket.recv_string()
                    print(msg)
                    print(j)

        #cv2.imshow("Thresh",thresh)
        #cv2.imshow("Output",drawing)
        cv2.imshow("Input", image)

        key = cv2.waitKey(1) & 0xFF

        rawCapture.truncate(0)
        if key == ord('q'):
            break
	def get_all_convexity_defects(self, contour):
		hull_no_points = cv2.convexHull(contour, returnPoints=False)
		return cv2.convexityDefects(contour, hull_no_points)
Esempio n. 50
0
def finalCall():
 paths = ['C:\\Users\\kwadehra\\Desktop\\asl_dataset']
 trainX = []  # training lists X
 trainY = []  # trainig lists y
 nb_classes = 3  # number of classes to be classified
 img_rows, img_cols = 100, 100  # size of training images
 img_channels = 3  # BGR channels OpenCV reads images in BGR
 batch_size = 32  # batch size used during training the model
 nb_epoch = 2  # iterations for training
 data_augmentation = True

# # dictionary for classes from char to numbers
 classes = {
     # '0': 0,
     # '1': 0,
     # '2': 1,
     # '3': 2,
     # '4': 3,
     # '5': 5,
     # '6': 6,
     # '7': 7,
     # '8': 8,
     # '9': 9,
     # 'a': 0,
     'b': 0,
     # 'c': 2,
     'd': 1,
     # 'e': 4,
     'f': 2,
     # 'g': 6,
     # 'h': 7,
     # 'i': 2,
     # 'j': 9,
     # 'k': 10,
     # 'l': 11,
     # 'm': 12,
     # 'n': 13,
     # 'o': 14,
     # 'p': 3,
     # 'q': 16,
     # 'r': 4,
     # 's': 18,
     # 't': 19,
     # 'u': 20,
     # 'v': 21,
     # 'y': 24,
     # 'z': 25,
     # 'w': 22,
     # 'x': 23,
 }
 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6)

 model = load_model('modelbdf.hdf5')


 def identifyGesture(handTrainImage):
        # saving the sent image for checking
        # converting the image to same resolution as training data by padding to reach 1:1 aspect ratio and then
        # resizing to 60 x 60.
        # Same is done with training data in preprocess_image.py. Opencv image is first
        # converted to Pillow image to do this.
     handTrainImage = cv2.cvtColor(handTrainImage, cv2.COLOR_BGR2RGB)  # OpenCV inputs images in BGR
     img = Image.fromarray(handTrainImage)
     img_w, img_h = img.size
     M = max(img_w, img_h)
     background = Image.new('RGB', (M, M), (0, 0, 0))
     bg_w, bg_h = background.size
     offset = ((bg_w - img_w) // 2, (bg_h - img_h) // 2)
     background.paste(img, offset)
     size = 100, 100
     background = background.resize(size, Image.ANTIALIAS)
    # # saving the processed image for checking.
    # background.save("C:\\Users\\kwadehra\\Desktop\\SignLanguage\\SavedBackgrounds")

    # # get image as numpy array and predict using model
     open_cv_image = np.array(background)
     background = open_cv_image.astype('float32')
     background = background / 255
     background = background.reshape((1,) + background.shape)
     predictions = model.predict_classes(background)
     print(predictions)

    # print predicted class and get the class name (character name) for the given class number and return it
    # key = next( key for key, value in classes.items() if value == predictions[0])
    # return key
     for key, value in classes.items():
         if value == predictions[0]:
             print(key)
             return key


# # # Create a window to display the camera feed
 cv2.namedWindow('Camera Output')
 cv2.namedWindow('Hand')
 cv2.namedWindow('HandTrain')


 def nothing(k):
     pass


# # TrackBars for fixing skin color of the person
 cv2.createTrackbar('B for min', 'Camera Output', 0, 255, nothing)
 cv2.createTrackbar('G for min', 'Camera Output', 0, 255, nothing)
 cv2.createTrackbar('R for min', 'Camera Output', 0, 255, nothing)
 cv2.createTrackbar('B for max', 'Camera Output', 0, 255, nothing)
 cv2.createTrackbar('G for max', 'Camera Output', 0, 255, nothing)
 cv2.createTrackbar('R for max', 'Camera Output', 0, 255, nothing)

# # Default skin color values in natural lighting
 cv2.setTrackbarPos('B for min', 'Camera Output', 52)
 cv2.setTrackbarPos('G for min', 'Camera Output', 128)
 cv2.setTrackbarPos('R for min', 'Camera Output', 0)
 cv2.setTrackbarPos('B for max', 'Camera Output', 255)
 cv2.setTrackbarPos('G for max', 'Camera Output', 140)
 cv2.setTrackbarPos('R for max', 'Camera Output', 146)

# # Default skin color values in indoor lighting
 cv2.setTrackbarPos('B for min', 'Camera Output', 0)
 cv2.setTrackbarPos('G for min', 'Camera Output', 130)
 cv2.setTrackbarPos('R for min', 'Camera Output', 103)
 cv2.setTrackbarPos('B for max', 'Camera Output', 255)
 cv2.setTrackbarPos('G for max', 'Camera Output', 182)
 cv2.setTrackbarPos('R for max', 'Camera Output', 130)

# Get pointer to video frames from primary device
 videoFrame = cv2.VideoCapture(1)
# Process the video frames
 keyPressed = -1  # -1 indicates no key pressed. Can press any key to exit
# cascade xml file for detecting palm. Haar classifier
 palm_cascade = cv2.CascadeClassifier('palm.xml')
# previous values of cropped variable
 x_crop_prev, y_crop_prev, w_crop_prev, h_crop_prev = 0, 0, 0, 0
# previous cropped frame if we need to compare histograms of previous image with this to see the change.
# Not used but may need later.
# _, prevHandImage = videoFrame.read()

# # previous frame contour of hand. Used to compare with new contour to find if gesture has changed.
 prevcnt = np.array([], dtype=np.int32)

# gesture static increments when gesture doesn't change till it reaches 10 (frames) and then resets to 0.
# gesture detected is set to 10 when gesture static reaches 10."Gesture Detected is displayed for next
# 10 frames till gestureDetected decrements to 0.
 gestureStatic = 0
 gestureDetected = 0

 while keyPressed < 0:  # any key pressed has a value >= 0

    # Getting min and max colors for skin
     min_YCrCb = np.array([cv2.getTrackbarPos('B for min', 'Camera Output'),
                          cv2.getTrackbarPos('G for min', 'Camera Output'),
                          cv2.getTrackbarPos('R for min', 'Camera Output')], np.uint8)
     max_YCrCb = np.array([cv2.getTrackbarPos('B for max', 'Camera Output'),
                          cv2.getTrackbarPos('G for max', 'Camera Output'),
                          cv2.getTrackbarPos('R for max', 'Camera Output')], np.uint8)

    # Grab video frame, Decode it and return next video frame
     readSuccess, sourceImage = videoFrame.read()
     if not readSuccess:
         print("Frame not read correctly")
         continue

    # Convert image to YCrCb
     imageYCrCb = cv2.cvtColor(sourceImage, cv2.COLOR_BGR2YCR_CB)
     imageYCrCb = cv2.GaussianBlur(imageYCrCb, (5, 5), 0)

    # Find region with skin tone in YCrCb image
     skinRegion = cv2.inRange(imageYCrCb, min_YCrCb, max_YCrCb)

    # Do contour detection on skin region
     _, contours, hierarchy = cv2.findContours(skinRegion, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    # sorting contours by area. Largest area first.
     contours = sorted(contours, key=cv2.contourArea, reverse=True)
     if len(contours) <= 0:
         print("Contour not found")
         continue

    # get largest contour and compare with largest contour from previous frame.
    # set previous contour to this one after comparison.
     cnt = contours[0]
     ret = cv2.matchShapes(cnt, prevcnt, 2, 0.0)
     prevcnt = contours[0]

    # once we get contour, extract it without background into a new window called handTrainImage
     stencil = np.zeros(sourceImage.shape).astype(sourceImage.dtype)
     color = [255, 255, 255]
     cv2.fillPoly(stencil, [cnt], color)
     handTrainImage = cv2.bitwise_and(sourceImage, stencil)

    # if comparison returns a high value (shapes are different), start gestureStatic over. Else increment it.
     if ret > 0.70:
         gestureStatic = 0
     else:
         gestureStatic += 1

    # crop coordinates for hand.
     x_crop, y_crop, w_crop, h_crop = cv2.boundingRect(cnt)

    # place a rectangle around the hand.
     cv2.rectangle(sourceImage, (x_crop, y_crop), (x_crop + w_crop, y_crop + h_crop), (255, 0, 0), 2)

    # if the crop area has changed drastically form previous frame, update it.
     if (abs(x_crop - x_crop_prev) > 50 or abs(y_crop - y_crop_prev) > 50 or
                abs(w_crop - w_crop_prev) > 50 or abs(h_crop - h_crop_prev) > 50):
         x_crop_prev = x_crop
         y_crop_prev = y_crop
         h_crop_prev = h_crop
         w_crop_prev = w_crop

    # create crop image
     handImage = sourceImage.copy()[max(0, y_crop_prev - 50):y_crop_prev + h_crop_prev + 50,
                max(0, x_crop_prev - 50):x_crop_prev + w_crop_prev + 50]
    # cv2.imshow('hel', handImage)

    # Training image with black background
     handTrainImage = handTrainImage[max(0, y_crop_prev - 15):y_crop_prev + h_crop_prev + 15,
                     max(0, x_crop_prev - 15):x_crop_prev + w_crop_prev + 15]
    # cv2.imshow('hi', handTrainImage)

    # if gesture is static for 10 frames, set gestureDetected to 10 and display "gesture detected"
    # on screen for 10 frames.




     if gestureStatic == 5:
         gestureDetected = 5
         print("Gesture Detected")
         letterDetected = identifyGesture(handTrainImage)


     if gestureDetected > 0:
         if letterDetected != None:
             img = np.zeros((512, 512, 3), np.uint8)
             cv2.rectangle(img,(384,0),(510,128),(0,255,0),3)
             font = cv2.FONT_HERSHEY_SIMPLEX
             cv2.putText(img, str(letterDetected), (10, 500), font, 4, (255, 255, 255), 2, cv2.LINE_AA)
             cv2.imshow('image', img)
         gestureDetected -= 1

     gray = cv2.cvtColor(handImage, cv2.COLOR_BGR2HSV)
     palm = palm_cascade.detectMultiScale(gray)
     for (x, y, w, h) in palm:
         cv2.rectangle(sourceImage, (x, y), (x + w, y + h), (147, 20, 255), 2)
        # roi_gray = gray[y:y + h, x:x + w]
         roi_color = sourceImage[y:y + h, x:x + w]

    # to show convex hull in the image
     hull = cv2.convexHull(cnt, returnPoints=False)
     defects = cv2.convexityDefects(cnt, hull)
    # counting defects in convex hull. To find center of palm. Center is average of defect points.
     count_defects = 0
     if defects is None:
         print("Convexity defects can't be detected")
         continue

     for i in range(defects.shape[0]):
         s, e, f, d = defects[i, 0]
         start = tuple(cnt[s][0])
         end = tuple(cnt[e][0])
         far = tuple(cnt[f][0])
         centre = far
         if count_defects == 0:
             cent = far
         a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
         b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
         c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
         angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) * 57
         if angle <= 90:
             count_defects += 1
             if count_defects < 5:
                 cv2.circle(sourceImage, far, 5, [0, 0, 255], -1)
                 center_of_palm = ((far[0] + centre[0]) / 2, (far[1] + centre[1]) / 2)
         cv2.line(sourceImage, start, end, [0, 0, 255], 2)
    # cv2.circle(sourceImage, avr, 10, [255, 255, 255], -1)


    # drawing the largest contour
     cv2.drawContours(sourceImage, contours, 0, (0, 255, 0), 1)

    # Display the source image and cropped image
     cv2.imshow('Camera Output', sourceImage)
     cv2.imshow('Hand', handImage)
     cv2.imshow('HandTrain', handTrainImage)

    # Check for user input to close program
     keyPressed = cv2.waitKey(30)  # wait 30 miliseconds in each iteration of while loop

# Close window and camera after exiting the while loop
 videoFrame.release()
 cv2.destroyWindow('Camera Output')
Esempio n. 51
0
    def detect(self):
        vel = Twist()
        vel.linear.x = 0
        vel.angular.z = 0  #left
        self.pub_vel.publish(vel)
        min_YCrCb = np.array([0, 133, 77], np.uint8)
        max_YCrCb = np.array([235, 173, 127], np.uint8)
        '''Callback function of subscribed topic. 
		Here images get converted and features detected'''
        while self.move:
            (grabbed, self.img) = camera.read()
            self.img = imutils.resize(self.img, width=400)
            imageYCrCb = cv2.cvtColor(self.img, cv2.COLOR_BGR2YCR_CB)
            skinMask = cv2.inRange(imageYCrCb, min_YCrCb, max_YCrCb)

            # apply a series of erosions and dilations to the mask
            # using an elliptical kernel
            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11))
            skinMask = cv2.erode(skinMask, kernel, iterations=2)
            skinMask = cv2.dilate(skinMask, kernel, iterations=2)

            # blur the mask to help remove noise, then apply the
            # mask to the frame
            skinMask = cv2.GaussianBlur(skinMask, (3, 3), 0)
            skin = cv2.bitwise_and(self.img, self.img, mask=skinMask)

            grey = cv2.cvtColor(skin, cv2.COLOR_BGR2GRAY)
            value = (35, 35)
            blurred = cv2.GaussianBlur(grey, value, 0)
            _, thresh1 = cv2.threshold(blurred, 127, 255,
                                       cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
            #cv2.imshow('Thresholded', thresh1)
            _, contours, hierarchy = cv2.findContours(thresh1.copy(),
                                                      cv2.RETR_TREE,
                                                      cv2.CHAIN_APPROX_NONE)
            max_area = -1

            for i in range(len(contours)):
                cnt = contours[i]
                area = cv2.contourArea(cnt)
                if (area > max_area):
                    max_area = area
                    ci = i
            cnt = contours[ci]
            x, y, w, h = cv2.boundingRect(cnt)
            cv2.rectangle(skin, (x, y), (x + w, y + h), (0, 0, 255), 0)
            hull = cv2.convexHull(cnt)
            drawing = np.zeros(skin.shape, np.uint8)
            cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 0)
            cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 0)
            hull = cv2.convexHull(cnt, returnPoints=False)
            defects = cv2.convexityDefects(cnt, hull)
            count_defects = 0
            cv2.drawContours(thresh1, contours, -1, (0, 255, 0), 3)

            if (defects.shape[0] != None):
                for i in range(defects.shape[0]):
                    s, e, f, d = defects[i, 0]
                    start = tuple(cnt[s][0])
                    end = tuple(cnt[e][0])
                    far = tuple(cnt[f][0])
                    a = math.sqrt((end[0] - start[0])**2 +
                                  (end[1] - start[1])**2)
                    b = math.sqrt((far[0] - start[0])**2 +
                                  (far[1] - start[1])**2)
                    c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
                    angle = math.acos((b**2 + c**2 - a**2) / (2 * b * c)) * 57
                    if angle <= 90:
                        count_defects += 1
                        cv2.circle(skin, far, 1, [0, 0, 255], -1)
                    cv2.line(skin, start, end, [0, 255, 0], 2)
            if count_defects == 1:  #2
                self.count(2)
            elif count_defects == 2:  #3
                self.count(3)
            elif count_defects == 3:  #4
                self.count(4)
            elif count_defects == 4:  #5
                self.count(5)
            else:  #0-1
                #self.move0()
                a = 0

            all_img = np.hstack((drawing, skin))
            cv2.imshow('Contours', all_img)
            k = cv2.waitKey(10)
def getFingerPosition(max_contour, img_result, debug):
    points1 = []

    # Image Moments : 이미지 모멘트는 객체의 무게중심, 객체의 면적 등과 같은 특성을 계산할 때 유용
    # cv.moments() 함수는 이미지 모멘트를 계산하고 이를 사전형 자료에 담아 리턴함.
    M = cv.moments(max_contour)

    cx = int(M['m10'] / M['m00'])
    cy = int(M['m01'] / M['m00'])

    # 다각형 추출
    # approxPolyDP(): 다각형을 대상으로 꼭지점을 점점 줄여나가는 함수. epsilon(오차)만큼을 최대한으로 해서 꼭지점을 줄여나감
    # 그래서 epsilon 값이 작을수록 원본과 비슷한 결과가 도출되고 epsilon(오차)값이 크면 클수록 꼭지점의 개수가 점점 더 줄어든다.
    # , 인자로 주어진 곡선 또는 다각형을 epsilon 값에 따라 꼭지점을 줄여 새로운 곡선이나 다각형을 생성하여 리턴
    # 인자 > cnt : numpy Array 형식의 곡선 또는 다각형. epsilon:근사 정확도를 위한 값. 오리지널 커브와 근사 커브 거리의 최대값으로 사용,
    # True : True면 폐곡선, False면 양끝이 열려있는 곡선임을 의미
    approx = cv.approxPolyDP(max_contour,
                             0.02 * cv.arcLength(max_contour, True), True)
    # convex Hull 볼록체 : 윤곽선(points, contours)의 경계면을 둘러싸는 다각형을 구하는 알고리즘.
    # 오목한 부분을 피해서 contour을 그린다.
    hull = cv.convexHull(approx)

    for i, point in enumerate(hull):
        if cy > point[0][1]:
            points1.append(tuple(point[0]))

    if debug:
        cv.drawContours(img_result, [hull], 0, (0, 255, 0), 2)
        for point in points1:
            cv.circle(img_result, tuple(point), 15, (0, 0, 0), -1)

    hull = cv.convexHull(approx, returnPoints=False)
    defects = cv.convexityDefects(approx, hull)

    if defects is None:
        return -1, None

    points2 = []
    for i in range(defects.shape[0]):
        s, e, f, d = defects[i, 0]
        start = tuple(approx[s][0])
        end = tuple(approx[e][0])
        far = tuple(approx[f][0])

        angle = caculateAngle(
            np.array(end) - np.array(far),
            np.array(start) - np.array(far))

        if angle > 0 and angle < 45 and d > 10000:
            if start[1] < cy:
                points2.append(start)
            if end[1] < cy:
                points2.append(end)
    if debug:
        cv.drawContours(img_result, [approx], 0, (255, 0, 255), 2)
        for point in points2:
            cv.circle(img_result, tuple(point), 20, (0, 255, 0), 5)

    points1 = points1 + points2
    points1 = list(set(points1))

    new_points = []
    for point1 in points1:
        idx = -1
        for j, points2 in enumerate(approx):
            if point1 == tuple(points2[0]):
                idx = j
                break
        if idx == -1:
            continue

        if idx - 1 >= 0:
            pre = np.array(approx[idx - 1][0])
        else:
            pre = np.array(approx[len(approx) - 1][0])

        if idx + 1 < len(approx):
            next = np.array(approx[idx + 1][0])
        else:
            next = np.array(approx[0][0])

        angle = caculateAngle(pre - point1, next - point1)
        distnace1 = distanceBetweenTwoPoints(pre, point1)
        distnace2 = distanceBetweenTwoPoints(next, point1)

        if angle < 45 and distnace1 > 40 and distnace2 > 40:
            new_points.append(point1)

    return 1, new_points
Esempio n. 53
0
def num_fingers(image):
    #grab the raw NumPy array representing the image, then initialize the timestamp and occupied/unoccupied text
    im = cv2.imread(image)
    im1 = cv2.imread(image)
    #frame=cv2.flip(frame,1)
    #hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    #lower_blue = np.array([100,50,50])
    #upper_blue = np.array([140,255,255])
    thresh = segment_colour(im)
    thresh2 = segment_colour(im)
    #cv2.imshow('frame',img)
    #cv2.imshow('mask',mask)
    kernel = np.ones((10, 10), np.uint8)
    #erosion = cv2.erode(thresh,kernel,iterations =2)

    im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE,
                                                cv2.CHAIN_APPROX_SIMPLE)
    #print (len(contours))
    if (len(contours) == 0):
        return 0
    #x=int((len(contours)/2))
    #cnt = contours[7]
    #area = cv2.contourArea(cnt)
    #cv2.drawContours(im1,[cnt],0,(0,0,255),100 )
    #print area
    ci = 0
    max_area = 0
    for i in range(len(contours)):
        #image=im
        cnt1 = contours[i]
        #cv2.drawContours(image,[cnt],0,(0,255,0),1)
        #plt.subplot(2,2,i+1),plt.imshow(im,cmap = 'gray')
        #plt.title(area), plt.xticks([]), plt.yticks([])
        #max_area=0
        area = cv2.contourArea(cnt1)
        #cv2.drawContours(image,[cnt],0,(0,255,0),1)
        #plt.subplot(2,2,i+1),plt.imshow(im,cmap = 'gray')
        #plt.title(area), plt.xticks([]), plt.yticks([])
        #print area,i
        if (area > max_area):
            max_area = area
            ci = i
            #print (ci)
    cnt = contours[ci]
    cv2.drawContours(im, [cnt], 0, (0, 0, 255), 5)
    x, y, w, h = cv2.boundingRect(cnt)
    #print w,h
    lbr = 2 * (w + h)
    #cv2.drawContours(im1,[cnt1],0,(0,0,255),100 )
    hull = cv2.convexHull(cnt)
    cv2.drawContours(im1, [hull], 0, (0, 255, 0), 10)
    hull = cv2.convexHull(cnt, returnPoints=False)
    defects = cv2.convexityDefects(cnt, hull)
    drawing = np.zeros(im.shape, np.uint8)
    #print defects
    #cv2.drawContours(im,[cnt],0,(0,255,0),1)
    #cv2.drawContours(im,[hull],0,(0,0,255),1)
    #defects = cv2.convexityDefects(cnt,hull)
    #print defects
    mind = 0
    maxd = 0
    count = 0

    for i in range(1, defects.shape[0]):
        s, e, f, d = defects[i, 0]
        start = tuple(cnt[s][0])
        end = tuple(cnt[e][0])
        far = tuple(cnt[f][0])
        #cv2.line(im1,start,end,[0 ,0,255],100)
        #cv2.circle(im1,far,100,[0,0,255],-1)
        if ((d >= 0.4 * lbr) and (angle(far, start, end) < 90)):
            #print(1)
            cv2.line(im1, start, end, [0, 0, 255], 10)
            cv2.circle(im1, far, 5, [0, 0, 255], -1)
            count = count + 1
            """
           # cv2.namedWindow('thresh', cv2.WINDOW_NORMAL)
            #cv2.imshow('thresh',im1)
            #cv2.waitKey(2000)
           # cv2.destroyAllWindows()

            """

            #print i,d

    numberoffinger = count + 1
    cv2.namedWindow('thresh', cv2.WINDOW_NORMAL)
    cv2.imshow('thresh', im1)
    cv2.waitKey(1000)
    cv2.destroyAllWindows()
    return numberoffinger
Esempio n. 54
0
def hand():
    try:
        cap = cv2.VideoCapture(0)
        cap.set(3, 320)
        cap.set(4, 240)
    except:
        print('camera_error')
        return

    beforecnt = 0

    while True:
        ret, frame = cap.read()

        if not ret:
            print('camera_error')
            break

        dst = frame.copy()
        test = cv2.cvtColor(dst, cv2.COLOR_BGR2YCrCb)
        mask_hand = cv2.inRange(test, np.array([0, 132, 77], dtype="uint8"),
                                np.array([255, 173, 133], dtype="uint8"))
        blur = cv2.blur(mask_hand, (2, 2))
        ret, thr = cv2.threshold(blur, 132, 255, cv2.THRESH_BINARY)
        _, contours, hierachy = cv2.findContours(thr, cv2.RETR_TREE,
                                                 cv2.CHAIN_APPROX_SIMPLE)
        cnt = 0

        if contours:
            contours = max(contours, key=lambda x: cv2.contourArea(x))
            hull = cv2.convexHull(contours, returnPoints=False)
            defects = cv2.convexityDefects(contours, hull)
            #cv2.drawContours(dst, contours, -1, (0, 255, 255), 2)
            if defects is not None:
                cnt = 0
                for i in range(defects.shape[0]):
                    startd, endd, fard, d = defects[i][0]
                    start = tuple(contours[startd][0])
                    end = tuple(contours[endd][0])
                    far = tuple(contours[fard][0])
                    a = np.sqrt((end[0] - start[0])**2 +
                                (end[1] - start[1])**2)
                    b = np.sqrt((far[0] - start[0])**2 +
                                (far[1] - start[1])**2)
                    c = np.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
                    angle = np.arccos((b**2 + c**2 - a**2) / (2 * b * c))

                    if angle >= np.pi / 10 and angle <= np.pi / 2.3:
                        cnt += 1
                        cv2.circle(dst, far, 4, [0, 0, 255], -1)
                if cnt > 0:
                    cnt = cnt + 1
                    beforecnt = beforecnt * 0.97 + cnt * 0.03

        else:
            cnt = 0
            setCount(round(beforecnt))

        cv2.putText(dst, str(round(beforecnt)), (0, 90),
                    cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2,
                    cv2.LINE_AA)
        cv2.putText(dst, str(round(recordcnt)), (0, 130),
                    cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2, cv2.LINE_AA)

        if mode == -1:
            colorCode = "c" + str(recordcnt)
            setColor(colorCode)

        cv2.imshow('dst', dst)
        #cv2.imshow('ret', thr)
        #cv2.imshow('key', test)

        k = cv2.waitKey(1) & 0xFF
        if k == 27:
            break

    cap.release()
    cv2.destroyAllWindows()
Esempio n. 55
0
def processImage(image):
    # Apply Gaussian blur
    image = cv.GaussianBlur(image, (9, 9), 4)

    # Convert to HSV color-space
    hsvImage = cv.cvtColor(image, cv.COLOR_BGR2HSV)

    # Calculate the lower and upper HS values
    minH = 0
    maxH = 50

    minS = 255 * 0.21
    maxS = 255 * 0.68

    lower = (minH, minS, 0)
    upper = (maxH, maxS, 255)

    # Mask HS Values to create a binary image
    mask = cv.inRange(hsvImage, lower, upper)

    # Morphological transformations to filter
    erode = cv.erode(mask, np.ones((3, 3)), iterations=2)
    dilation = cv.dilate(erode, np.ones((3, 3)), iterations=3)

    #filtered = cv.GaussianBlur(dilation, (5, 5), 4)
    #ret, threshold = cv.threshold(filtered, 120, 255, 0)

    # Find the contours
    ret, contours, hierarchy = cv.findContours(dilation, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)

    # Find contour with maximum area
    contour = max(contours, key=lambda x: cv.contourArea(x))

    # Create bounding rectangle around the contour
    x, y, w, h = cv.boundingRect(contour)
    cv.rectangle(image, (x, y), (x+w, y+h), (0, 0, 255), 0)

    # Find convex hull
    hull = cv.convexHull(contour)

    # Draw contour
    drawing = np.zeros(image.shape, np.uint8)
    cv.drawContours(drawing, [contour], -1, (0, 255, ), 0)
    cv.drawContours(drawing, [hull], -1, (0, 0, 255), 0)

    # Find convexity defects
    hull = cv.convexHull(contour, returnPoints=False)
    defects = cv.convexityDefects(contour, hull)

    count_defects = 0

    for i in range(defects.shape[0]):
        s, e, f, d = defects[i, 0]
        start = tuple(contour[s][0])
        end = tuple(contour[e][0])
        far = tuple(contour[f][0])

        cv.line(image, start, end, [0, 255, 0], 2)

        a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
        b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
        c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
        angle = (math.acos((b**2 + c**2 - a**2)/(2*b*c))*180)/3.14

        # far point is below the start and end points
        if far[1] < start[1] or far[1] < end[1]:
            continue
        
        # if angle > 90 draw a circle at the far point
        if angle <= 90:
            count_defects += 1
            cv.circle(image, far, 5, [0, 0, 255], -1)
            cv.circle(image, end, 5, [255, 0, 255], -1)
            cv.circle(image, start, 5, [255, 0, 255], -1)

    # Show each mask used
    image = cv.resize(image, (500, 500)) 
    mask = cv.resize(mask, (500, 500)) 
    cv.imshow("Hand", image)
    cv.imshow("Mask", mask)
    #cv.imshow("HSV", hsvImage)
    #cv.imshow("Thresholded", threshold)
    while(cv.waitKey(0) != 27): continue
    num_fingers = count_defects + 1
    hands = []
    hands.append(num_fingers)
    return hands
Esempio n. 56
0
def findDefects(cnt):
    if cnt is None or cnt == []:
        return None
    hull = cv2.convexHull(cnt, returnPoints=False)
    defects = cv2.convexityDefects(cnt, hull)
    return defects
def getFingerPosition(max_contour, img_result, debug):
    points1 = []

    # STEP 6-1
    M = cv.moments(max_contour)

    cx = int(M['m10'] / M['m00'])
    cy = int(M['m01'] / M['m00'])

    max_contour = cv.approxPolyDP(max_contour,
                                  0.02 * cv.arcLength(max_contour, True), True)
    hull = cv.convexHull(max_contour)

    for point in hull:
        if cy > point[0][1]:
            points1.append(tuple(point[0]))

    if debug:
        cv.drawContours(img_result, [hull], 0, (0, 255, 0), 2)
        for point in points1:
            cv.circle(img_result, tuple(point), 15, [0, 0, 0], -1)

    # STEP 6-2
    hull = cv.convexHull(max_contour, returnPoints=False)
    defects = cv.convexityDefects(max_contour, hull)

    if defects is None:
        return -1, None

    points2 = []
    for i in range(defects.shape[0]):
        s, e, f, d = defects[i, 0]
        start = tuple(max_contour[s][0])
        end = tuple(max_contour[e][0])
        far = tuple(max_contour[f][0])

        angle = calculateAngle(
            np.array(start) - np.array(far),
            np.array(end) - np.array(far))

        if angle < 90:
            if start[1] < cy:
                points2.append(start)

            if end[1] < cy:
                points2.append(end)

    if debug:
        cv.drawContours(img_result, [max_contour], 0, (255, 0, 255), 2)
        for point in points2:
            cv.circle(img_result, tuple(point), 20, [0, 255, 0], 5)

    # STEP 6-3
    points = points1 + points2
    points = list(set(points))

    # STEP 6-4
    new_points = []
    for p0 in points:

        i = -1
        for index, c0 in enumerate(max_contour):
            c0 = tuple(c0[0])

            if p0 == c0 or distanceBetweenTwoPoints(p0, c0) < 20:
                i = index
                break

        if i >= 0:
            pre = i - 1
            if pre < 0:
                pre = max_contour[len(max_contour) - 1][0]
            else:
                pre = max_contour[i - 1][0]

            next = i + 1
            if next > len(max_contour) - 1:
                next = max_contour[0][0]
            else:
                next = max_contour[i + 1][0]

            if isinstance(pre, np.ndarray):
                pre = tuple(pre.tolist())
            if isinstance(next, np.ndarray):
                next = tuple(next.tolist())

            angle = calculateAngle(
                np.array(pre) - np.array(p0),
                np.array(next) - np.array(p0))

            if angle < 90:
                new_points.append(p0)

    return 1, new_points
Esempio n. 58
0
    def detect(self, frame, x, y, z, show=False, flipped=False):
        """
        classify operator's hand based on rgb/d data
        :param frame: rgb 1920x1080 image frame as array
        :param x: x color pixel coordinate
        :param y: y color pixel coordinate
        :param z: z depth distance of hand from rgbd sensor
        :param show: boolean to show the classified hand state
        :param flipped: boolean to flip the frame to match the pixel coordinates
        :return: None
        """
        # Import libraries here for optimization
        import cv2
        import numpy as np
        # Loop until flag
        if not self._done:
            try:
                if flipped:
                    frame = cv2.flip(
                        frame, 1
                    )  # If the image is flipped flip it again for better accuracy
                roi = self.roi(frame, x, y, z)  # Compute area of hand only
                # cv2.imshow('ROI', roi)
                # cv2.imwrite('images/roi1.png', roi)
                # Change track bars position
                if self._show:
                    self.lower_skin = np.array(
                        [
                            cv2.getTrackbarPos("L_R", "Settings"),
                            cv2.getTrackbarPos("L_G", "Settings"),
                            cv2.getTrackbarPos("L_B", "Settings")
                        ],
                        dtype=np.uint8)  # lower limit for skin color
                    self.upper_skin = np.array(
                        [
                            cv2.getTrackbarPos("U_R", "Settings"),
                            cv2.getTrackbarPos("U_G", "Settings"),
                            cv2.getTrackbarPos("U_B", "Settings")
                        ],
                        dtype=np.uint8)  # upper limit for skin color
                # Convert from BGR to HSV
                hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
                # cv2.imshow('HSV', hsv)
                # cv2.imwrite('images/roi2.png', hsv)
                # Apply mask for skin detection
                mask = cv2.inRange(hsv, self.lower_skin, self.upper_skin)
                # cv2.imshow('Skin Detection', mask)
                # cv2.imwrite('images/roi3.png', mask)
                # Dilate image to fill black spots and spots inside hand
                mask = cv2.dilate(mask, self.kernel, iterations=4)
                # cv2.imshow('Dilate', mask)
                # cv2.imwrite('images/roi4.png', mask)
                # Apply Gaussian Blur to reduce noise
                mask = cv2.GaussianBlur(mask, (5, 5), 100)
                # cv2.imshow('GaussianBlur', mask)
                # cv2.imwrite('images/roi5.png', mask)
                # Compute contours in remaining image
                contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE,
                                                       cv2.CHAIN_APPROX_SIMPLE)
                # Find max contour in given area
                max_contour = max(contours, key=lambda x: cv2.contourArea(x))

                # Find useful data of these contour like center of mass
                # M = cv2.moments(max_contour)
                # cx = int(M['m10']/M['m00'])
                # cy = int(M['m01']/M['m00'])
                # cv2.circle(roi, (int(cx), int(cy)), 3, [255, 0, 255], -1)
                # Find minimum enclosing area
                # (circle_x, circle_y), radius = cv2.minEnclosingCircle(max_contour)
                # center = (int(circle_x), int(circle_y))
                # radius = int(radius)
                # cv2.circle(roi, center, radius, [128, 0, 128], 2)
                # Find maximum distance of contour
                # distance = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
                # cv2.circle(roi, center, int(np.amax(distance)), [255, 0, 0], 2)
                # cv2.imshow('DISTANCES', distance)
                # cv2.drawContours(roi, [max_contour], 0, (0, 0, 255), 2)
                # cv2.imshow('Max Contour', roi)
                # cv2.imwrite('images/roi6.png', roi)
                # Compute contour and convex hull area to compare
                epsilon = 0.0005 * cv2.arcLength(max_contour, True)
                approx = cv2.approxPolyDP(max_contour, epsilon, True)
                hull = cv2.convexHull(max_contour)
                area_hull = cv2.contourArea(hull)
                area_contour = cv2.contourArea(max_contour)
                area_ratio = ((area_hull - area_contour) / area_contour) * 100
                # print(area_ratio)
                hull = cv2.convexHull(approx, returnPoints=False)
                defects = cv2.convexityDefects(approx, hull)
                fingers = 0
                # Search for defects on convex hull of max contour area found
                for i in range(defects.shape[0]):
                    # Get starting point, ending point, farthest point and distance to farthest point for each line
                    s, e, f, d = defects[i, 0]
                    """
                    The triangles are generated when two fingers are apart and the area_hull - area_contour leaves a triangle shape behind.
                    The upside triangle between two fingers apart
                    """
                    # Find sides of triangle
                    start = approx[s][0]
                    end = approx[e][0]
                    far = approx[f][0]
                    # Calculate the length of each triangle line
                    a = np.sqrt((end[0] - start[0])**2 +
                                (end[1] - start[1])**2)
                    b = np.sqrt((far[0] - start[0])**2 +
                                (far[1] - start[1])**2)
                    c = np.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
                    # Calculate the semi - perimeter of the triangle
                    semi_perimeter = (a + b + c) / 2
                    # Calculate the area of the triangle using Heron's formula that uses only the lengths of the triangle
                    ar = np.sqrt(semi_perimeter * (semi_perimeter - a) *
                                 (semi_perimeter - b) * (semi_perimeter - c))
                    # Then from the area of the triangle we can find the height assuming that the triangle is upside down, so the a side is always he base.
                    # The height is the distance of the farthest point from the convexhull
                    d = (2 * ar) / a
                    # Cosine rule for triangle angles
                    angle = np.arccos(
                        (b**2 + c**2 - a**2) / (2 * b * c)) * (180 / np.pi)
                    # if the angle is greater than 90 then there is no defect and the line is on the perimeter of the hand
                    # if the distance of the farthest point is too close then the point is inside the hand and its just noise.
                    if angle <= 90 and d > 30:
                        fingers += 1  # find defects on convex hull ( defects usually are fingers )
                        if show:
                            cv2.circle(roi, tuple(far), 3, [255, 0, 0], -1)
                    if show:
                        cv2.line(roi, tuple(start), tuple(end), [0, 255, 0], 2)

                fingers += 1
                # Update state based on number of defects/edges found in convex hull
                if fingers == 1:
                    if area_ratio < 26 / z:
                        if show:
                            cv2.putText(roi, 'Closed', (0, 50),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                        (0, 0, 255), 3, cv2.LINE_AA)
                        self.state = 'CLOSED'
                        self.fingers = 0
                    else:
                        if show:
                            cv2.putText(roi, 'Open', (0, 50),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                        (0, 0, 255), 3, cv2.LINE_AA)
                        self.state = 'OPEN'
                        self.fingers = 1
                elif fingers == 2:
                    if area_ratio < 26 / z:
                        if show:
                            cv2.putText(roi, 'Closed', (0, 50),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                        (0, 0, 255), 3, cv2.LINE_AA)
                        self.state = 'CLOSED'
                        self.fingers = 0
                    else:
                        if show:
                            cv2.putText(roi, 'Open', (0, 50),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                        (0, 0, 255), 3, cv2.LINE_AA)
                        self.state = 'OPEN'
                        self.fingers = 2
                elif fingers == 3:
                    if show:
                        cv2.putText(roi, '3', (0, 50),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255),
                                    3, cv2.LINE_AA)
                    self.state = 'OPEN'
                    self.fingers = 3
                elif fingers == 4:
                    if show:
                        cv2.putText(roi, '4', (0, 50),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255),
                                    3, cv2.LINE_AA)
                    self.state = 'OPEN'
                    self.fingers = 4
                elif fingers == 5:
                    if show:
                        cv2.putText(roi, '5', (0, 50),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255),
                                    3, cv2.LINE_AA)
                    self.state = 'OPEN'
                    self.fingers = 5
                else:
                    if show:
                        cv2.putText(roi, 'UNKNOWN', (0, 50),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255),
                                    3, cv2.LINE_AA)
                    self.state = 'UNKNOWN'
                if show:
                    # Show ROI of Color Frame
                    cv2.imshow('Hand Classifier', roi)
                """
                # Capture using q or space
                if cv2.waitKey(1) & 0xff == ord('q') or cv2.waitKey(1) % 256 == 32:
                    print(f'[GESTURE CLASSIFIER]: SAVED IMAGE')
                    cv2.imwrite('images/roi1.png', roi)
                cv2.imwrite('images/roi7.png', roi)
                print(f'[FIN]')
                import time
                time.sleep(1)
                """
            # Handle any exception
            except Exception as e:
                print(f'[GESTURE CLASSIFIER]: {e}')

        # Destroy all windows
        else:
            cv2.destroyAllWindows()
Esempio n. 59
0
    def predict_frame(self):
        try:
            ret, frame = self.video.read()
            frame = cv2.flip(frame, 1)
            kernel = np.ones((3, 3), np.uint8)

            # define region of interest
            roi = frame[100:400, 100:400]

            cv2.rectangle(frame, (100, 100), (400, 400), (0, 255, 0), 0)
            hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

            # define range of skin color in HSV
            lower_skin = np.array([0, 20, 70], dtype=np.uint8)
            upper_skin = np.array([20, 255, 255], dtype=np.uint8)

            # extract skin colur imagw
            mask = cv2.inRange(hsv, lower_skin, upper_skin)

            # extrapolate the hand to fill dark spots within
            mask = cv2.dilate(mask, kernel, iterations=4)

            # blur the image
            mask = cv2.GaussianBlur(mask, (5, 5), 100)

            # find contours
            contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE,
                                                   cv2.CHAIN_APPROX_SIMPLE)

            # find contour of max area(hand)
            cnt = max(contours, key=lambda x: cv2.contourArea(x))

            # approx the contour a little
            epsilon = 0.0005 * cv2.arcLength(cnt, True)
            approx = cv2.approxPolyDP(cnt, epsilon, True)

            # make convex hull around hand
            hull = cv2.convexHull(cnt)

            # define area of hull and area of hand
            areahull = cv2.contourArea(hull)
            areacnt = cv2.contourArea(cnt)

            # find the percentage of area not covered by hand in convex hull
            arearatio = ((areahull - areacnt) / areacnt) * 100

            # find the defects in convex hull with respect to hand
            hull = cv2.convexHull(approx, returnPoints=False)
            defects = cv2.convexityDefects(approx, hull)

            # l = no. of defects
            l = 0

            # code for finding no. of defects due to fingers
            for i in range(defects.shape[0]):
                s, e, f, d = defects[i, 0]
                start = tuple(approx[s][0])
                end = tuple(approx[e][0])
                far = tuple(approx[f][0])
                pt = (100, 180)

                # find length of all sides of triangle
                a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
                b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
                c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
                s = (a + b + c) / 2
                ar = math.sqrt(s * (s - a) * (s - b) * (s - c))

                # distance between point and convex hull
                d = (2 * ar) / a

                # apply cosine rule here
                angle = math.acos((b**2 + c**2 - a**2) / (2 * b * c)) * 57

                # ignore angles > 90 and ignore points very close to convex hull(they generally come due to noise)
                if angle <= 90 and d > 30:
                    l += 1
                    cv2.circle(roi, far, 3, [255, 0, 0], -1)

                # draw lines around hand
                cv2.line(roi, start, end, [0, 255, 0], 2)

            l += 1

            # print corresponding gestures which are in their ranges
            if l == 1:
                if areacnt < 2000:
                    text = 'Put hand in the box'
                else:
                    if arearatio < 12:
                        text = '0'

                    elif arearatio < 17.5:
                        text = 'Best of luck'

                    else:
                        text = '1'

            elif l == 2:
                text = '2'

            elif l == 3:
                if arearatio < 27:
                    text = '3'
                else:
                    text = 'ok'

            elif l == 4:
                text = '4'

            elif l == 5:
                text = '5'

            elif l == 6:
                text = 'reposition'

            else:
                text = 'reposition'

            # show the windows

            return text

        except Exception as ex:
            pass
Esempio n. 60
0
                                        cv2.CHAIN_APPROX_SIMPLE)
 #Acha contorno da maior área
 cnt = max(contours, key=lambda x: cv2.contourArea(x))
 #Aproxima um pouco o contorno
 epsilon = 0.0005 * cv2.arcLength(cnt, True)
 approx = cv2.approxPolyDP(cnt, epsilon, True)
 #Casco convexo em torno da mão
 hull = cv2.convexHull(cnt)
 #Área da mão e área do casco
 areahull = cv2.contourArea(hull)
 areacnt = cv2.contourArea(cnt)
 #Porcentagem da área da mão que não cobre a area do casco
 porcentagemArea = ((areahull - areacnt) / areacnt) * 100
 #Acha os defeitos de convexidades
 hull = cv2.convexHull(approx, returnPoints=False)
 defects = cv2.convexityDefects(approx, hull)
 # l = numero de defeitos
 l = 0
 #lista de distancias
 distancias = []
 #numero de convexidades nos dedos(muita matemática);
 for i in range(defects.shape[0]):
     s, e, f, d = defects[i, 0]
     comeco = tuple(approx[s][0])
     fim = tuple(approx[e][0])
     far = tuple(approx[f][0])
     pt = (100, 180)
     a = math.sqrt((fim[0] - comeco[0])**2 + (fim[1] - comeco[1])**2)
     b = math.sqrt((far[0] - comeco[0])**2 + (far[1] - comeco[1])**2)
     c = math.sqrt((fim[0] - far[0])**2 + (fim[1] - far[1])**2)
     s = (a + b + c) / 2