def global_opti(solution, inst, demand, capacity, v, l): edges = learn.all_edges(solution) fixed_edges = [] c_init = route.cost_sol(solution, inst, const.quality_cost) routes = route.copy_sol(solution) new_solution = route.copy_sol(routes) for e in edges: cp = utile.rd_point(e, solution, inst) routes = EC.ejection_chain(l, cp, v, routes, inst, demand, capacity, fixed_edges, "DE") for i in routes: if len(i) == 2: routes = EC.reject(i, routes, v, inst, demand, capacity) for i in range(len(routes)): routes[i] = LK.LK(routes[i], inst) # apply cross-exchange routes = CE.cross_exchange(cp, v, routes, inst, demand, capacity, fixed_edges, "DE") # apply LK for i in range(len(routes)): routes[i] = LK.LK(routes[i], inst) c_final = route.cost_sol(routes, inst, const.quality_cost) if c_init - c_final > 0: c_init = c_final new_solution = route.copy_sol(routes) return new_solution
def cross_exchange(point, voisins, routes, inst, demand,capacity, fixedEdges, mode): # compute the two routes considered, and the NN of the point we remove (a). v is a point (r1, r2), v,c = route.another_route(point, voisins, routes, inst,demand,capacity, fixedEdges, "CE", mode) if v < 0: return routes # copy of the current solution current_cand = [r1.copy(), r2.copy()] cand = [] c_init = route.cost_sol(current_cand, inst, const.quality_cost) # for a future comparison i_v = current_cand[1].index(v) i_c = current_cand[0].index(c) if i_v != 1: current_cand[0][i_c], current_cand[1][i_v - 1] = current_cand[1][i_v-1], c else: current_cand[0][i_c], current_cand[1][i_v] = current_cand[1][i_v], c if mode == "RD": parcours_i = utile.permut([i for i in range(len(r2)-1)]) parcours_j = utile.permut([j for j in range(len(r1)-1)]) if mode == "DE": parcours_i = [i for i in range(len(r2)-1)] parcours_j = [j for j in range(len(r1)-1)] for i in parcours_i: if i != i_v-1: for j in parcours_j: if j != i_c-1: p1 = current_cand[0][j+1] p2 = current_cand[1][i+1] current_cand[0][j+1], current_cand[1][i + 1] = p2, p1 if route.cost_sol(current_cand, inst, const.quality_cost) < c_init and route.route_demand(current_cand[0], demand) <= capacity and route.route_demand(current_cand[1], demand) <= capacity: if mode == "RD": routes.remove(r1) routes.remove(r2) routes = routes + current_cand return routes elif mode == "DE" : c_init = route.cost_sol(current_cand, inst,const.quality_cost) cand = route.copy_sol(current_cand) current_cand = [r1.copy(), r2.copy()] if mode == "DE" and cand != []: routes.remove(r1) routes.remove(r2) routes = routes + cand return routes
def rd_generate(nb, instance, demand,capacity, initial): Base = [] me = 0 for j in range(nb): l = round(0.1*rd.randint(1, 20), 1) m = round(0.1*rd.randint(1, 20), 1) n = round(0.1*rd.randint(1, 20), 1) detailed_cust = [0 for i in range(len(instance))] for r in range(len(initial)): for i in initial[r]: detailed_cust[i-1] = r routes = CW.ClarkeWright(route.copy_sol(initial), instance, demand,capacity, l, m, n, detailed_cust) for i in range(len(routes)): routes[i] = LK.LK(routes[i].copy(), instance) routes = normalize_solution(routes) me += route.cost_sol(routes, instance,const.quality_cost) Base.append((route.cost_sol(routes, instance,const.quality_cost), routes, (l, m, n))) Base.sort() return Base, [Base[0][0], Base[len(Base)-1][0], me/nb]
def learning_heuristic(instance, demand,capacity, l): # compute global variables namefile = "resultats/Heuristic_results/Values/all/golden7.txt" all_sol = [] tps_deb = time.time() max_d = opt.max_depth(instance) v = utile.voisins(const.KNN, instance) initial = CW.init_routes(instance, demand) edges, param = learn.learning_results(0.5, 2, 100, instance, demand,capacity, initial) initial_routes = learn.complete(learn.destruction(learn.ignore_0(edges)), instance, demand,capacity) tps_learn = time.time() rw.writef(namefile, 'Time = ' + str(tps_learn-tps_deb)) base = [] costs = 0 fixed_edges = [] best_cost = route.cost_sol(initial_routes, instance,const.quality_cost) for i in range(40): print(i) (lam, mu, nu) = param[0] init, sol = opt.optimisation_heuristic( route.copy_sol(initial_routes), instance, demand,capacity, lam, mu, nu, l, max_d, v,fixed_edges) base.append(sol) c_sol = route.cost_sol(sol, instance,const.quality_cost) all_sol.append((c_sol, sol)) if c_sol < best_cost: best_sol = sol best_cost = c_sol if i%4 == 0 and i!=0 : print("learn") edges = [] fixed_edges = [] base = [] mat_qual = learn.init_matrix(len(instance)) mat_qual = learn.learn(mat_qual, base) e_qual = learn.mat_info_rg(int(len(demand)*0.8), mat_qual) for e in e_qual: if not learn.is_edge_in(e, edges) and not learn.unfeasable_edge(e, edges): edges.append(e) initial_routes = learn.complete(learn.destruction( learn.ignore_0(edges)), instance, demand,capacity) edges, param = learn.learning_results( 0.8, 2, 100, instance, demand,capacity, initial_routes) initial_routes = learn.complete(learn.destruction( learn.ignore_0(edges)), instance, demand,capacity) else : print("best learn") edges = utile.fixed_alea(learn.all_edges(best_sol),0.95) initial_routes = learn.complete(learn.destruction( learn.ignore_0(edges)), instance, demand,capacity) """ edges,param = learning_results(0.95,2,100,instance,demand,initial_routes) initial_routes = complete(destruction2( ignore_0(edges)), instance, demand) """ all_sol.sort() tps_fin = time.time() print(tps_fin-tps_deb) costs = 0 for i in range(10): c_sol, sol = all_sol[i] costs += c_sol rw.writef(namefile, '') rw.writef(namefile, 'res = ' + str(round(c_sol, 3))) rw.writef(namefile, 'res_int = ' + str(round(route.cost_sol(sol, instance, "Int")))) rw.writef(namefile, 'solution = ' + str(sol)) rw.writef(namefile, '') rw.writef(namefile, 'Mean = ' + str(costs/10)) rw.writef(namefile, 'Execution = ' + str(tps_fin-tps_deb)) rw.writef(namefile, '')
def optimisation_heuristic(initial_routes, inst, demand, capacity, lam, mu, nu, l, max_d, v, fixed_edges): tps1 = time.time() B = [ penalization_function(1, 0, 0, max_d), penalization_function(1, 1, 0, max_d), penalization_function(1, 0, 1, max_d), penalization_function(1, 1, 1, max_d), penalization_function(0, 1, 0, max_d), penalization_function(0, 1, 1, max_d) ] b_i = 0 b = B[b_i] p = [[0 for j in range(len(inst))] for i in range(len(inst))] detailed_cust = [0 for i in range(len(inst))] for r in range(len(initial_routes)): for i in initial_routes[r]: detailed_cust[i - 1] = r initial_routes = CW.ClarkeWright(initial_routes, inst, demand, capacity, lam, mu, nu, detailed_cust) routes = route.copy_sol(initial_routes) routes2 = route.copy_sol(routes) c_init = route.cost_sol(routes, inst, const.quality_cost) tps2 = time.time() tpsGS = time.time() tpsCH = time.time() while tps2 - tps1 < len(demand) / 8: # find the worst edge worst = bad_edge(b, p, routes, inst, fixed_edges)[1] p[worst[0]][worst[1]] += 1 p[worst[1]][worst[0]] += 1 # apply ejection-chain cp = utile.rd_point(worst, routes, inst) routes = EC.ejection_chain(l, cp, v, routes, inst, demand, capacity, fixed_edges, "RD") for i in routes: if len(i) == 2: routes = EC.reject(i, routes, v, inst, demand, capacity) for i in range(len(routes)): routes[i] = LK.LK(routes[i], inst) # apply cross-exchange routes = CE.cross_exchange(cp, v, routes, inst, demand, capacity, fixed_edges, "RD") # apply LK for i in range(len(routes)): routes[i] = LK.LK(routes[i], inst) #routes = global_opti(routes,inst,demand,v,l) c_final = route.cost_sol(routes, inst, const.quality_cost) if c_final < c_init: routes2 = route.copy_sol(routes) # new optimum for i in routes2: if len(i) == 2: routes2 = EC.reject(i, routes2, v, inst, demand, capacity) c_init = route.cost_sol(routes2, inst, const.quality_cost) print(round(tps2 - tps1, 2), round(c_init, 3)) tps1 = time.time() tpsCH = time.time() tpsGS = time.time() if tps2 - tpsGS > 10: # return to the last best solution, for gs iterations routes = route.copy_sol(routes2) tpsGS = time.time() if tps2 - tpsCH > 5: tpsCH = time.time() b_i += 1 if b_i < len(B): b = B[b_i] p = [[0 for j in range(len(inst))] for i in range(len(inst))] else: b_i = 0 b = B[b_i] p = [[0 for j in range(len(inst))] for i in range(len(inst))] tps2 = time.time() for i in (routes2): if len(i) == 2: routes2 = EC.reject(i, routes2, v, inst, demand, capacity) if len(i) == 1: routes2.remove(i) for i in range(len(routes2)): routes2[i] = LK.LK(routes2[i], inst) return initial_routes, routes2
def learning_heuristic(): # compute global variables instance, demand = const.instance, const.demand namefile = const.namefile costs = 0 all_sol = [] fixed_edges = [] BaseSolution = [] tps_deb = time.time() # learning initial = CW.init_routes() edges, param = learn.learning_results(0.7, 2, 50, initial, const.typeBase, const.percent, const.learningCriterion) initial_routes = route.complete(utile.destruction(utile.ignore_0(edges))) tps_learn = time.time() rw.writef(namefile, 'Learning time = ' + str(tps_learn - tps_deb)) # start cpt = 0 for i in range(const.NbIterations): print(i) edges = [] (lam, mu, nu) = param[0] # best tuple of the learning phase BaseSolution = opt.optimisation_heuristic( route.copy_sol(initial_routes), lam, mu, nu, fixed_edges) all_sol += BaseSolution # conserve best and worst costs stat = [BaseSolution[0][0], BaseSolution[-1][0]] # New learning phase quality = (stat[1] - stat[0]) / 10 + stat[0] crit = max(const.upBound - cpt / 10, const.lowBound) cpt += 1 if crit == const.lowBound: cpt = 0 ls_qual = learn.learning_set_quality(BaseSolution, quality) mat_qual = learn.init_matrix(len(instance)) mat_qual = learn.learn(mat_qual, ls_qual) e_qual = learn.mat_info_rg(int(len(demand) * crit), mat_qual) initial_routes = route.complete( utile.destruction(utile.ignore_0(e_qual))) # write results in a file all_sol.sort() tps_fin = time.time() print(tps_fin - tps_deb) costs = 0 for i in range(10): c_sol, sol = all_sol[i] costs += c_sol rw.writef(namefile, '') rw.writef(namefile, 'res = ' + str(round(c_sol, 3))) rw.writef(namefile, 'res_int = ' + str(round(route.cost_sol(sol, "Int")))) rw.writef(namefile, 'solution = ' + str(sol)) rw.writef(namefile, '') rw.writef(namefile, 'Mean = ' + str(costs / 10)) rw.writef(namefile, 'Execution = ' + str(tps_fin - tps_deb)) rw.writef(namefile, '')
def cross_exchange(point, voisins, routes, fixedEdges, mode): # compute the two routes considered, and the nearest neighbor of the point we remove. (r1, r2), neigh, c = route.another_route(point, voisins, routes, fixedEdges, "CE", mode) if neigh < 0: return routes # copy of the current solution current_cand = [r1.copy(), r2.copy()] cand = [] c_init = route.cost_sol(current_cand, const.quality_cost) i_neigh = current_cand[1].index(neigh) i_c = current_cand[0].index(c) # we verify that we won't exchange the depot if i_neigh != 1: current_cand[0][i_c], current_cand[1][i_neigh - 1] = current_cand[1][i_neigh-1], c else: current_cand[0][i_c], current_cand[1][i_neigh] = current_cand[1][i_neigh], c # random exploration if mode == "RD": parcours_i = utile.permut([i for i in range(len(r2)-1)]) parcours_j = utile.permut([j for j in range(len(r1)-1)]) # order exploration if mode == "DE": parcours_i = [i for i in range(len(r2)-1)] parcours_j = [j for j in range(len(r1)-1)] # we try to exchange two customers between the routes of c and neigh for i in parcours_i: if i != i_neigh-1: for j in parcours_j: if j != i_c-1: p1 = current_cand[0][j+1] p2 = current_cand[1][i+1] current_cand[0][j+1], current_cand[1][i + 1] = p2, p1 if route.cost_sol(current_cand, const.quality_cost) < c_init and route.route_demand(current_cand[0]) <= const.capacity and route.route_demand(current_cand[1]) <= const.capacity: # first improve if mode == "RD": routes.remove(r1) routes.remove(r2) routes = routes + current_cand return routes # return the best elif mode == "DE": c_init = route.cost_sol( current_cand, const.quality_cost) cand = route.copy_sol(current_cand) # reset the modification current_cand = [r1.copy(), r2.copy()] if mode == "DE" and cand != []: routes.remove(r1) routes.remove(r2) routes = routes + cand return routes