Esempio n. 1
0
def rep_plot_pca(df,
                 x=1,
                 y=2,
                 s=300,
                 figsize=None,
                 dpi=None,
                 label=True,
                 cmap=None,
                 fontsize=12):
    l1, l2 = f"pc{int(x)}", f"pc{int(y)}"
    pc1, pc2 = df[l1], df[l2]
    gen, rep = df['gen'], df['rep']
    plt.scatter(pc1, pc2, c=integerize(rep), s=s, zorder=2, cmap=cmap)
    # plot lines between consecutive generations
    for rep in rep.unique():
        this_rep = df[df['rep'] == rep]
        plt.plot(this_rep[l1], this_rep[l2], '--', color='0.8', zorder=1)
    # each marker gets a label, of the current replicate
    label_df = df[[l1, l2, 'rep', 'gen']]
    if label:
        for pc1, pc2, rep, gen in label_df.itertuples(index=False):
            plt.text(pc1,
                     pc2,
                     s=f"{rep}",
                     horizontalalignment='center',
                     verticalalignment='center',
                     fontsize=fontsize)
    plt.xlabel(l1.upper())
    plt.ylabel(l2.upper())
    plt.tight_layout()
    return plt
Esempio n. 2
0
def het_plot(tempfreqs, rep, time):
    p = tempfreqs.freqs[rep, time, :]
    het = 2 * p * (1 - p)
    midpoints = tempfreqs.gintervals.cummulative_midpoint
    seqids = tempfreqs.gintervals.seqid
    plt.scatter(midpoints, het, c=integerize(seqids))
Esempio n. 3
0
def correction_diagnostic_plot(diag, figsize=None, color=True):
    corr_df, models, xpreds, ypreds = diag
    if figsize is not None:
        fig, ax = plt.subplots(ncols=2, nrows=2, figsize=figsize)
    else:
        fig, ax = plt.subplots(ncols=2, nrows=2)
    labelx, labely = 0.05, 0.85
    before = corr_df[corr_df['correction'] == False]
    after = corr_df[corr_df['correction'] == True]
    if color:
        ax[0, 0].scatter(before['depth'],
                         before['diag'],
                         c=integerize(before['seqid']),
                         s=5)
        ax[0, 1].scatter(before['depth'],
                         after['diag'],
                         c=integerize(before['seqid']),
                         s=5)
    else:
        ax[0, 0].scatter(before['depth'], before['diag'], s=5)
        ax[0, 1].scatter(before['depth'], after['diag'], s=5)
    ax[0, 0].plot(xpreds[False], ypreds[False][0], 'r-')
    ax[0, 1].plot(xpreds[True], ypreds[True][0], 'r-')
    ax[0, 0].annotate('before correction',
                      xy=(labelx, labely),
                      xycoords='axes fraction')
    ax[0, 0].set_ylabel('variance')
    ax[0, 0].set_xlabel('average depth per window')
    ax[0, 1].set_xlabel('average depth per window')
    ax[0, 1].annotate('after correction',
                      xy=(labelx, labely),
                      xycoords='axes fraction')

    ax[1, 0].plot(xpreds[False], ypreds[False][1], 'r-')
    ax[1, 0].annotate('before correction',
                      xy=(labelx, labely),
                      xycoords='axes fraction')
    ax[1, 0].axhline(y=0, color='99', zorder=1, linestyle='--')
    ax[1, 0].set_ylabel('covariance')
    if color:
        ax[1, 0].scatter(before['depth'],
                         before['offdiag'],
                         c=integerize(before['seqid']),
                         zorder=2,
                         s=5)
        ax[1, 1].scatter(before['depth'],
                         after['offdiag'],
                         c=integerize(before['seqid']),
                         zorder=2,
                         s=5)
    else:
        ax[1, 0].scatter(before['depth'], before['offdiag'], zorder=2, s=5)
        ax[1, 1].scatter(before['depth'], after['offdiag'], zorder=2, s=5)
    ax[1, 1].plot(xpreds[True], ypreds[True][1], 'r-')
    ax[1, 1].annotate('after correction',
                      xy=(labelx, labely),
                      xycoords='axes fraction')
    ax[1, 1].axhline(y=0, color='99', zorder=1, linestyle='--')
    ax[1, 0].set_xlabel('average depth per window')
    ax[1, 1].set_xlabel('average depth per window')
    plt.tight_layout()
    return fig, ax