Esempio n. 1
0
    def P(u, v, alpha=1.0, beta=0.0):
        """
            v := alpha * [ Qc^-1, 0, 0;  0, 0, 0;  0, 0, 0 ] * u + beta * v
        """

        v *= beta
        base.symv(Qinv, u, v, alpha=alpha, beta=1.0)
Esempio n. 2
0
def checksol(sol, A, B, C = None, d = None, G = None, h = None): 
    """
    Check optimality conditions

        C * x  + G' * z + A'(Z) + d = 0  
        G * x <= h 
        z >= 0,  || Z || < = 1
        z' * (h - G*x) = 0
        tr (Z' * (A(x) + B)) = || A(x) + B ||_*.

    """

    p, q = B.size
    n = A.size[1]
    if G is None: G = spmatrix([], [], [], (0, n))
    if h is None: h = matrix(0.0, (0, 1))
    m = h.size[0]
    if C is None: C = spmatrix(0.0, [], [], (n,n))
    if d is None: d = matrix(0.0, (n, 1))

    if sol['status'] is 'optimal':

        res = +d
        base.symv(C, sol['x'], res, beta = 1.0)
        base.gemv(G, sol['z'], res, beta = 1.0, trans = 'T')
        base.gemv(A, sol['Z'], res, beta = 1.0, trans = 'T')
        print "Dual residual: %e" %blas.nrm2(res)

        if m:
           print "Minimum primal slack (scalar inequalities): %e" \
               %min(h - G*sol['x'])
           print "Minimum dual slack (scalar inequalities): %e" \
               %min(sol['z'])

        if p:
            s = matrix(0.0, (p,1))
            X = matrix(A*sol['x'], (p, q)) + B
            lapack.gesvd(+X, s)
            nrmX = sum(s)
            lapack.gesvd(+sol['Z'], s)
            nrmZ = max(s)
            print "Norm of Z: %e" %nrmZ
            print "Nuclear norm of A(x) + B: %e" %nrmX
            print "Inner product of Z and A(x) + B: %e" \
                %blas.dot(sol['Z'], X)
        
    elif sol['status'] is 'primal infeasible':

        res = matrix(0.0, (n,1))
        base.gemv(G, sol['z'], res, beta = 1.0, trans = 'T')
        print "Dual residual: %e" %blas.nrm2(res)
        print "h' * z = %e" %blas.dot(h, sol['z'])
        print "Minimum dual slack (scalar inequalities): %e" \
            %min(sol['z'])


    else:
        pass
Esempio n. 3
0
def checksol(sol, A, B, C=None, d=None, G=None, h=None):
    """
    Check optimality conditions

        C * x  + G' * z + A'(Z) + d = 0  
        G * x <= h 
        z >= 0,  || Z || < = 1
        z' * (h - G*x) = 0
        tr (Z' * (A(x) + B)) = || A(x) + B ||_*.

    """

    p, q = B.size
    n = A.size[1]
    if G is None: G = spmatrix([], [], [], (0, n))
    if h is None: h = matrix(0.0, (0, 1))
    m = h.size[0]
    if C is None: C = spmatrix(0.0, [], [], (n, n))
    if d is None: d = matrix(0.0, (n, 1))

    if sol['status'] is 'optimal':

        res = +d
        base.symv(C, sol['x'], res, beta=1.0)
        base.gemv(G, sol['z'], res, beta=1.0, trans='T')
        base.gemv(A, sol['Z'], res, beta=1.0, trans='T')
        print "Dual residual: %e" % blas.nrm2(res)

        if m:
            print "Minimum primal slack (scalar inequalities): %e" \
                %min(h - G*sol['x'])
            print "Minimum dual slack (scalar inequalities): %e" \
                %min(sol['z'])

        if p:
            s = matrix(0.0, (p, 1))
            X = matrix(A * sol['x'], (p, q)) + B
            lapack.gesvd(+X, s)
            nrmX = sum(s)
            lapack.gesvd(+sol['Z'], s)
            nrmZ = max(s)
            print "Norm of Z: %e" % nrmZ
            print "Nuclear norm of A(x) + B: %e" % nrmX
            print "Inner product of Z and A(x) + B: %e" \
                %blas.dot(sol['Z'], X)

    elif sol['status'] is 'primal infeasible':

        res = matrix(0.0, (n, 1))
        base.gemv(G, sol['z'], res, beta=1.0, trans='T')
        print "Dual residual: %e" % blas.nrm2(res)
        print "h' * z = %e" % blas.dot(h, sol['z'])
        print "Minimum dual slack (scalar inequalities): %e" \
            %min(sol['z'])

    else:
        pass
Esempio n. 4
0
def softmargin_completion(Q, d, gamma):
    """
    Solves the QP

        minimize    (1/2)*y'*Qc^{-1}*y + gamma*sum(v)
        subject to  diag(d)*(y + b*ones) + v >= 1
                    v >= 0

    (with variables y, b, v) and its dual, the 'soft-margin' SVM problem,

        maximize    -(1/2)*z'*Qc*z + d'*z
        subject to  0 <= diag(d)*z <= gamma*ones
                    sum(z) = 0

    (with variables z).

    Qc is the max determinant completion of Q.


    Input arguments.

        Q is a sparse N x N sparse matrix with chordal sparsity pattern
            and a positive definite completion

        d is an N-vector of labels -1 or 1.

        gamma is a positive parameter.

        F is the chompack pattern corresponding to Q.  If F is None, the
            pattern is computed.


    Output.

        z, y, b, v, optval, L, iters

    """

    if verbose: solvers.options['show_progress'] = True
    else: solvers.options['show_progress'] = False

    N = Q.size[0]
    p = chompack.maxcardsearch(Q)
    symb = chompack.symbolic(Q, p)
    Qc = chompack.cspmatrix(symb) + Q

    # Qinv is the inverse of the max. determinant p.d. completion of Q
    Lc = Qc.copy()
    chompack.completion(Lc)
    Qinv = Lc.copy()
    chompack.llt(Qinv)
    Qinv = Qinv.spmatrix(reordered=False)
    Qinv = chompack.symmetrize(Qinv)

    def P(u, v, alpha=1.0, beta=0.0):
        """
            v := alpha * [ Qc^-1, 0, 0;  0, 0, 0;  0, 0, 0 ] * u + beta * v
        """

        v *= beta
        base.symv(Qinv, u, v, alpha=alpha, beta=1.0)

    def G(u, v, alpha=1.0, beta=0.0, trans='N'):
        """
        If trans is 'N':

            v := alpha * [ -diag(d),  -d,  -I;  0,  0,  -I ] * u + beta * v.

        If trans is 'T':

            v := alpha * [ -diag(d), 0;  -d', 0;  -I, -I ] * u + beta * v.
        """

        v *= beta

        if trans is 'N':
            v[:N] -= alpha * (base.mul(d, u[:N] + u[N]) + u[-N:])
            v[-N:] -= alpha * u[-N:]

        else:
            v[:N] -= alpha * base.mul(d, u[:N])
            v[N] -= alpha * blas.dot(d, u, n=N)
            v[-N:] -= alpha * (u[:N] + u[N:])

    K = spmatrix(0.0, Qinv.I, Qinv.J)
    dy1, dy2 = matrix(0.0, (N, 1)), matrix(0.0, (N, 1))

    def Fkkt(W):
        """
        Custom KKT solver for

            [  Qinv  0   0  -D    0  ] [ ux_y ]   [ bx_y ]
            [  0     0   0  -d'   0  ] [ ux_b ]   [ bx_b ]
            [  0     0   0  -I   -I  ] [ ux_v ] = [ bx_v ]
            [ -D    -d  -I  -D1   0  ] [ uz_z ]   [ bz_z ]
            [  0     0  -I   0   -D2 ] [ uz_w ]   [ bz_w ]

        with D1 = diag(d1), D2 = diag(d2), d1 = W['d'][:N]**2,
        d2 = W['d'][N:])**2.
        """

        d1, d2 = W['d'][:N]**2, W['d'][N:]**2
        d3, d4 = (d1 + d2)**-1, (d1**-1 + d2**-1)**-1

        # Factor the chordal matrix K = Qinv + (D_1+D_2)^-1.
        K.V = Qinv.V
        K[::N + 1] = K[::N + 1] + d3
        L = chompack.cspmatrix(symb) + K
        chompack.cholesky(L)

        # Solve (Qinv + (D1+D2)^-1) * dy2 = (D1 + D2)^{-1} * 1
        blas.copy(d3, dy2)
        chompack.trsm(L, dy2, trans='N')
        chompack.trsm(L, dy2, trans='T')

        def g(x, y, z):

            # Solve
            #
            #     [ K    d3    ] [ ux_y ]
            #     [            ] [      ] =
            #     [ d3'  1'*d3 ] [ ux_b ]
            #
            #         [ bx_y ]   [ D  ]
            #         [      ] - [    ] * D3 * (D2 * bx_v + bx_z - bx_w).
            #         [ bx_b ]   [ d' ]

            x[:N] -= mul(d, mul(d3, mul(d2, x[-N:]) + z[:N] - z[-N:]))
            x[N] -= blas.dot(d, mul(d3, mul(d2, x[-N:]) + z[:N] - z[-N:]))

            # Solve dy1 := K^-1 * x[:N]
            blas.copy(x, dy1, n=N)
            chompack.trsm(L, dy1, trans='N')
            chompack.trsm(L, dy1, trans='T')

            # Find ux_y = dy1 - ux_b * dy2 s.t
            #
            #     d3' * ( dy1 - ux_b * dy2 + ux_b ) = x[N]
            #
            # i.e.  x[N] := ( x[N] - d3'* dy1 ) / ( d3'* ( 1 - dy2 ) ).

            x[N] = ( x[N] - blas.dot(d3, dy1) ) / \
                ( blas.asum(d3) - blas.dot(d3, dy2) )
            x[:N] = dy1 - x[N] * dy2

            # ux_v = D4 * ( bx_v -  D1^-1 (bz_z + D * (ux_y + ux_b))
            #     - D2^-1 * bz_w )

            x[-N:] = mul(
                d4, x[-N:] - div(z[:N] + mul(d, x[:N] + x[N]), d1) -
                div(z[N:], d2))

            # uz_z = - D1^-1 * ( bx_z - D * ( ux_y + ux_b ) - ux_v )
            # uz_w = - D2^-1 * ( bx_w - uz_w )
            z[:N] += base.mul(d, x[:N] + x[N]) + x[-N:]
            z[-N:] += x[-N:]
            blas.scal(-1.0, z)

            # Return W['di'] * uz
            blas.tbmv(W['di'], z, n=2 * N, k=0, ldA=1)

        return g

    q = matrix(0.0, (2 * N + 1, 1))

    if weights is 'proportional':
        dlist = list(d)
        C1 = 0.5 * N * gamma / dlist.count(1)
        C2 = 0.5 * N * gamma / dlist.count(-1)
        gvec = matrix([C1 if w == 1 else C2 for w in dlist], (N, 1))
        del dlist
        q[-N:] = gvec
    elif weights is 'equal':
        q[-N:] = gamma

    h = matrix(0.0, (2 * N, 1))
    h[:N] = -1.0
    sol = solvers.coneqp(P, q, G, h, kktsolver=Fkkt)
    u = matrix(0.0, (N, 1))
    y, b, v = sol['x'][:N], sol['x'][N], sol['x'][N + 1:]
    z = mul(d, sol['z'][:N])
    base.symv(Qinv, y, u)
    optval = 0.5 * blas.dot(y, u) + gamma * sum(v)
    return y, b, v, z, optval, Lc, sol['iterations']
Esempio n. 5
0
 def Pf(u, v, alpha = 1.0, beta = 0.0):  
     base.symv(C, u[0], v[0], alpha = alpha, beta = beta)
     blas.scal(beta, v[1])
     blas.scal(beta, v[2])
Esempio n. 6
0
 def Pf(u, v, alpha=1.0, beta=0.0):
     base.symv(C, u[0], v[0], alpha=alpha, beta=beta)
     blas.scal(beta, v[1])
     blas.scal(beta, v[2])
Esempio n. 7
0
 def fP(x, y, alpha=1.0, beta=0.0):
     base.symv(P, x, y, alpha=alpha, beta=beta)