def to_cvx(self, f, scale=1.0):
     yi = f(self.x[0])
     yj = f(self.x[1])
     yk = f(self.x[2])
     diff1 = yk - yj + eps
     #diff2 = yk - yi + eps
     diff2 = yk + yj - 2 * yi
     exp1 = 1 - cvx.exp(-scale * diff1)
     exp2 = 1 - cvx.exp(-scale * diff2)
     val = cvx.min_elemwise(exp1, exp2)
     log_val = -cvx.log(val)
     return log_val, [diff1 > eps, diff2 > eps]
Esempio n. 2
0
 def _res_update(self, f, pi, j, rho):
     K = f.size
     beta = self.p[j] / rho
     u0 = f + pi / rho
     u = np.sort(u0)[::-1]
     cumsum = 0
     for k in range(K - 1):
         cumsum += u[k]
         t = (cumsum - beta) / (k + 1)
         if u[k + 1] <= t:
             break
     f = cvx.min_elemwise(u0, t).value
     return np.array(f)
 def generate_cvx(cls, constraints, f, transform=None, scale=1.0):
     x, x_low, x_high = ConvexNeighborConstraint.generate_neighbors_for_scipy_optimize(
         constraints, transform)
     yi = f(x)
     yj = f(x_low)
     yk = f(x_high)
     diff1 = yk - yj
     #diff2 = yk - yi
     diff2 = yk + yj - 2 * yi
     exp1 = 1 - cvx.exp(-scale * diff1) + eps
     exp2 = 1 - cvx.exp(-scale * diff2) + eps
     val = cvx.min_elemwise(exp1, exp2)
     log_val = -cvx.log(val)
     sum_val = cvx.sum_entries(log_val)
     return sum_val, [diff1 > eps, diff2 > eps]
Esempio n. 4
0
 def objective(t, y, u):
     R = co.matrix(diag(reference(t)))
     return cp.norm(R * cp.min_elemwise(y-Tobj, 0)) \
          + cp.norm(u, 1) * args.cost
Esempio n. 5
0
def get_constraint_list_cov(x_train, y_train, x_control_train,
                            sensitive_attrs_to_cov_thresh, cons_type, w):
    constraints = []
    for attr in sensitive_attrs_to_cov_thresh.keys():

        attr_arr = x_control_train[attr]
        print(attr_arr)
        attr_arr_transformed, index_dict = get_one_hot_encoding(
            attr_arr.astype(int))

        if index_dict is None:  # binary attribute, in this case, the attr_arr_transformed is the same as the attr_arr

            s_val_to_total = {
                ct: {}
                for ct in [0, 1, 2]
            }  # constrain type -> sens_attr_val -> total number
            s_val_to_avg = {ct: {} for ct in [0, 1, 2]}
            cons_sum_dict = {
                ct: {}
                for ct in [0, 1, 2]
            }  # sum of entities (females and males) in constraints are stored here

            for v in set(attr_arr):
                s_val_to_total[0][v] = np.sum(x_control_train[attr] == v)
                s_val_to_total[1][v] = np.sum(
                    np.logical_and(x_control_train[attr] == v, y_train == -1)
                )  # FPR constraint so we only consider the ground truth negative dataset for computing the covariance
                s_val_to_total[2][v] = np.sum(
                    np.logical_and(x_control_train[attr] == v, y_train == +1))

            for ct in [0, 1, 2]:
                s_val_to_avg[ct][0] = s_val_to_total[ct][1] / float(
                    s_val_to_total[ct][0] + s_val_to_total[ct][1]
                )  # N1/N in our formulation, differs from one constraint type to another
                s_val_to_avg[ct][1] = 1.0 - s_val_to_avg[ct][0]  # N0/N

            for v in set(attr_arr):
                idx = x_control_train[attr] == v

                #################################################################
                # #DCCP constraints
                dist_bound_prod = cvxpy.mul_elemwise(
                    y_train[idx], x_train[idx] * w)  # y.f(x)

                cons_sum_dict[0][v] = cvxpy.sum_entries(
                    cvxpy.min_elemwise(0, dist_bound_prod)) * (
                        s_val_to_avg[0][v] / len(x_train)
                    )  # avg misclassification distance from boundary
                cons_sum_dict[1][v] = cvxpy.sum_entries(
                    cvxpy.min_elemwise(
                        0,
                        cvxpy.mul_elemwise(
                            (1 - y_train[idx]) / 2.0, dist_bound_prod))) * (
                                s_val_to_avg[1][v] / sum(y_train == -1))
                cons_sum_dict[2][v] = cvxpy.sum_entries(
                    cvxpy.min_elemwise(
                        0,
                        cvxpy.mul_elemwise(
                            (1 + y_train[idx]) / 2.0, dist_bound_prod))) * (
                                s_val_to_avg[2][v] / sum(y_train == +1))
                #################################################################

            if cons_type == 4:
                cts = [1, 2]
            elif cons_type in [0, 1, 2]:
                cts = [cons_type]

            else:
                raise Exception("Invalid constraint type")

            #################################################################
            # DCCP constraints
            for ct in cts:
                thresh = abs(sensitive_attrs_to_cov_thresh[attr][ct][1] -
                             sensitive_attrs_to_cov_thresh[attr][ct][0])
                constraints.append(
                    cons_sum_dict[ct][1] <= cons_sum_dict[ct][0] + thresh)
                constraints.append(
                    cons_sum_dict[ct][1] >= cons_sum_dict[ct][0] - thresh)

                #################################################################

        else:  # otherwise, its a categorical attribute, so we need to set the cov thresh for each value separately
            # need to fill up this part
            raise Exception(
                "Fill the constraint code for categorical sensitive features... Exiting..."
            )
            sys.exit(1)

    return constraints
Esempio n. 6
0
 def cvx_util(self, r):
     return cvx.min_elemwise(r, self.β * r)
Esempio n. 7
0
 def cvx_util(self,r):
     return cvx.min_elemwise(r, self.beta*r, self.beta*self.x0)