Esempio n. 1
0
    def test_boston_housing_no_fit_invalid(self):
        (x_train, y_train), (x_test, y_test) = TestUtil.get_boston_housing()
        explained_model = RandomForestRegressor(n_estimators=64,
                                                max_depth=5,
                                                random_state=1)
        explained_model.fit(x_train, y_train)

        model_builder = MLPModelBuilder(num_layers=2,
                                        num_units=32,
                                        activation="relu",
                                        p_dropout=0.2,
                                        verbose=0,
                                        batch_size=32,
                                        learning_rate=0.001,
                                        num_epochs=2,
                                        early_stopping_patience=128)
        masking_operation = ZeroMasking()
        loss = mean_squared_error
        explainer = CXPlain(explained_model, model_builder, masking_operation,
                            loss)

        with self.assertRaises(AssertionError):
            explainer.predict(x_test, y_test)

        with self.assertRaises(AssertionError):
            explainer.score(x_test, y_test)
Esempio n. 2
0
    def test_time_series_valid(self):
        num_samples = 1024
        fixed_length = 99
        (x_train,
         y_train), (x_test, y_test) = TestUtil.get_random_fixed_length_dataset(
             num_samples=num_samples, fixed_length=fixed_length)

        model_builder = RNNModelBuilder(with_embedding=False,
                                        num_layers=2,
                                        num_units=32,
                                        activation="relu",
                                        p_dropout=0.2,
                                        verbose=0,
                                        batch_size=32,
                                        learning_rate=0.001,
                                        num_epochs=2,
                                        early_stopping_patience=128)

        explained_model = MLPClassifier()
        explained_model.fit(x_train.reshape((-1, np.prod(x_train.shape[1:]))),
                            y_train)

        masking_operation = ZeroMasking()
        loss = binary_crossentropy
        explainer = CXPlain(explained_model,
                            model_builder,
                            masking_operation,
                            loss,
                            flatten_for_explained_model=True)

        explainer.fit(x_train, y_train)
        eval_score = explainer.score(x_test, y_test)
        train_score = explainer.get_last_fit_score()
        median = explainer.predict(x_test)
        self.assertTrue(median.shape == x_test.shape)
Esempio n. 3
0
    def test_boston_housing_load_save_valid(self):
        (x_train, y_train), (x_test, y_test) = TestUtil.get_boston_housing()
        explained_model = RandomForestRegressor(n_estimators=64, max_depth=5, random_state=1)
        explained_model.fit(x_train, y_train)

        model_builder = MLPModelBuilder(num_layers=2, num_units=32, activation="relu", p_dropout=0.2, verbose=0,
                                        batch_size=32, learning_rate=0.001, num_epochs=2, early_stopping_patience=128)
        masking_operation = ZeroMasking()
        loss = mean_squared_error

        num_models_settings = [1, 2]
        for num_models in num_models_settings:
            explainer = CXPlain(explained_model, model_builder, masking_operation, loss,
                                num_models=num_models)

            explainer.fit(x_train, y_train)
            median_1 = explainer.predict(x_test)

            tmp_dir_name = tempfile.mkdtemp()
            explainer.save(tmp_dir_name)

            with self.assertRaises(ValueError):
                explainer.save(tmp_dir_name, overwrite=False)

            explainer.save(tmp_dir_name, overwrite=True)
            explainer.load(tmp_dir_name)
            median_2 = explainer.predict(x_test)

            self.assertTrue(np.array_equal(median_1, median_2))

            shutil.rmtree(tmp_dir_name)  # Cleanup.
Esempio n. 4
0
    def test_boston_housing_valid(self):
        (x_train, y_train), (x_test, y_test) = TestUtil.get_boston_housing()
        explained_model = RandomForestRegressor(n_estimators=64,
                                                max_depth=5,
                                                random_state=1)
        explained_model.fit(x_train, y_train)

        model_builder = MLPModelBuilder(num_layers=2,
                                        num_units=32,
                                        activation="relu",
                                        p_dropout=0.2,
                                        verbose=0,
                                        batch_size=32,
                                        learning_rate=0.001,
                                        num_epochs=2,
                                        early_stopping_patience=128)
        masking_operation = ZeroMasking()
        loss = mean_squared_error
        explainer = CXPlain(explained_model, model_builder, masking_operation,
                            loss)

        explainer.fit(x_train, y_train)
        self.assertEqual(explainer.prediction_model.output_shape,
                         (None, np.prod(x_test.shape[1:])))

        eval_score = explainer.score(x_test, y_test)
        train_score = explainer.get_last_fit_score()
        median = explainer.predict(x_test)
        self.assertTrue(median.shape == x_test.shape)
Esempio n. 5
0
    def test_boston_housing_confidence_level_invalid(self):
        (x_train, y_train), (x_test, y_test) = TestUtil.get_boston_housing()
        explained_model = RandomForestRegressor(n_estimators=64,
                                                max_depth=5,
                                                random_state=1)
        explained_model.fit(x_train, y_train)

        model_builder = MLPModelBuilder(num_layers=2,
                                        num_units=32,
                                        activation="relu",
                                        p_dropout=0.2,
                                        verbose=0,
                                        batch_size=32,
                                        learning_rate=0.001,
                                        num_epochs=3,
                                        early_stopping_patience=128)
        masking_operation = ZeroMasking()
        loss = mean_squared_error

        num_models = 2
        explainer = CXPlain(explained_model,
                            model_builder,
                            masking_operation,
                            loss,
                            num_models=num_models)

        explainer.fit(x_train, y_train)

        invalid_confidence_levels = [1.01, -0.5, -0.01]

        for confidence_level in invalid_confidence_levels:
            with self.assertRaises(ValueError):
                explainer.predict(x_test, confidence_level=confidence_level)
Esempio n. 6
0
    def test_mnist_unet_valid(self):
        num_subsamples = 100
        (x_train, y_train), (x_test, y_test) = TestUtil.get_mnist(flattened=False, num_subsamples=num_subsamples)

        explained_model = MLPClassifier(solver='lbfgs', alpha=1e-5,
                                        hidden_layer_sizes=(64, 32), random_state=1)
        explained_model.fit(x_train.reshape((len(x_train), -1)), y_train)
        masking_operation = ZeroMasking()
        loss = categorical_crossentropy

        downsample_factors = [(2, 2), (4, 4), (4, 7), (7, 4), (7, 7)]
        with_bns = [True if i % 2 == 0 else False for i in range(len(downsample_factors))]
        for downsample_factor, with_bn in zip(downsample_factors, with_bns):
            model_builder = UNetModelBuilder(downsample_factor, num_layers=2, num_units=64, activation="relu",
                                             p_dropout=0.2, verbose=0, batch_size=256, learning_rate=0.001,
                                             num_epochs=2, early_stopping_patience=128, with_bn=with_bn)

            explainer = CXPlain(explained_model, model_builder, masking_operation, loss,
                                downsample_factors=downsample_factor, flatten_for_explained_model=True)

            explainer.fit(x_train, y_train)
            eval_score = explainer.score(x_test, y_test)
            train_score = explainer.get_last_fit_score()
            median = explainer.predict(x_test)
            self.assertTrue(median.shape == x_test.shape)
Esempio n. 7
0
    def test_mnist_unet_with_shape_valid(self):
        num_subsamples = 100
        (x_train,
         y_train), (x_test,
                    y_test) = TestUtil.get_mnist(flattened=False,
                                                 num_subsamples=num_subsamples)

        explained_model_builder = MLPModelBuilder(num_layers=2,
                                                  num_units=64,
                                                  activation="relu",
                                                  p_dropout=0.2,
                                                  verbose=0,
                                                  batch_size=256,
                                                  learning_rate=0.001,
                                                  num_epochs=2,
                                                  early_stopping_patience=128)
        input_shape = x_train.shape[1:]
        input_layer = Input(shape=input_shape)
        last_layer = Flatten()(input_layer)
        last_layer = explained_model_builder.build(last_layer)
        last_layer = Dense(y_train.shape[-1], activation="softmax")(last_layer)
        explained_model = Model(input_layer, last_layer)
        explained_model.compile(loss="categorical_crossentropy",
                                optimizer="adam")
        explained_model.fit(x_train, y_train)
        masking_operation = ZeroMasking()
        loss = categorical_crossentropy

        downsample_factors = [(2, 2), (4, 4), (4, 7), (7, 4), (7, 7)]
        with_bns = [
            True if i % 2 == 0 else False
            for i in range(len(downsample_factors))
        ]
        for downsample_factor, with_bn in zip(downsample_factors, with_bns):
            model_builder = UNetModelBuilder(downsample_factor,
                                             num_layers=2,
                                             num_units=64,
                                             activation="relu",
                                             p_dropout=0.2,
                                             verbose=0,
                                             batch_size=256,
                                             learning_rate=0.001,
                                             num_epochs=2,
                                             early_stopping_patience=128,
                                             with_bn=with_bn)

            explainer = CXPlain(explained_model,
                                model_builder,
                                masking_operation,
                                loss,
                                downsample_factors=downsample_factor)

            explainer.fit(x_train, y_train)
            eval_score = explainer.score(x_test, y_test)
            train_score = explainer.get_last_fit_score()
            median = explainer.predict(x_test)
            self.assertTrue(median.shape == x_test.shape)
Esempio n. 8
0
    def test_mnist_valid(self):
        num_subsamples = 100
        (x_train,
         y_train), (x_test,
                    y_test) = TestUtil.get_mnist(flattened=False,
                                                 num_subsamples=num_subsamples)

        explained_model = MLPClassifier(solver='lbfgs',
                                        alpha=1e-5,
                                        hidden_layer_sizes=(64, 32),
                                        random_state=1)
        explained_model.fit(x_train.reshape((len(x_train), -1)), y_train)

        model_builder = MLPModelBuilder(num_layers=2,
                                        num_units=64,
                                        activation="relu",
                                        p_dropout=0.2,
                                        verbose=0,
                                        batch_size=256,
                                        learning_rate=0.001,
                                        num_epochs=3,
                                        early_stopping_patience=128)
        masking_operation = ZeroMasking()
        loss = categorical_crossentropy

        downsample_factors = [(2, 2), (4, 4), (4, 7), (7, 4), (7, 7)]
        for downsample_factor in downsample_factors:
            explainer = CXPlain(explained_model,
                                model_builder,
                                masking_operation,
                                loss,
                                num_models=2,
                                downsample_factors=downsample_factor,
                                flatten_for_explained_model=True)

            explainer.fit(x_train, y_train)
            eval_score = explainer.score(x_test, y_test)
            train_score = explainer.get_last_fit_score()
            median, confidence = explainer.predict(x_test,
                                                   confidence_level=0.95)

            self.assertTrue(median.shape == x_test.shape)
            self.assertTrue(confidence.shape == x_test.shape[:-1] + (2, ))

            # Flatten predictions for iteration below.
            median = median.reshape((len(x_test), -1))
            confidence = confidence.reshape((len(x_test), -1, 2))

            for sample_idx in range(len(x_test)):
                for feature_idx in range(len(x_test[sample_idx])):
                    self.assertTrue(confidence[sample_idx][feature_idx][0] <=
                                    median[sample_idx][feature_idx] <=
                                    confidence[sample_idx][feature_idx][1])
                    self.assertTrue(
                        confidence[sample_idx][feature_idx][0] >= 0)
                    self.assertTrue(
                        confidence[sample_idx][feature_idx][1] >= 0)
Esempio n. 9
0
    def test_overwrite_ensemble_model_invalid(self):
        (x_train, y_train), (x_test, y_test) = TestUtil.get_boston_housing()

        model_builder = MLPModelBuilder()
        explained_model = RandomForestRegressor(n_estimators=64,
                                                max_depth=5,
                                                random_state=1)
        explained_model.fit(x_train, y_train)
        masking_operation = ZeroMasking()
        loss = binary_crossentropy
        num_models = 5
        explainer = CXPlain(explained_model,
                            model_builder,
                            masking_operation,
                            loss,
                            num_models=num_models)

        file_names = [
            CXPlain.get_config_file_name(),
            CXPlain.get_explained_model_file_name(".pkl"),
            CXPlain.get_loss_pkl_file_name(),
            CXPlain.get_model_builder_pkl_file_name(),
            CXPlain.get_masking_operation_pkl_file_name()
        ]

        # Test with untrained explanation model.
        for file_name in file_names:
            tmp_dir = TestExplanationModel.make_at_tmp(file_name)
            with self.assertRaises(ValueError):
                explainer.save(tmp_dir, overwrite=False)

        # Test with trained explanation model.
        explainer.fit(x_train, y_train)

        file_names = [
            CXPlain.get_config_file_name(),
            CXPlain.get_explained_model_file_name(".pkl"),
            CXPlain.get_loss_pkl_file_name(),
            CXPlain.get_model_builder_pkl_file_name(),
            CXPlain.get_masking_operation_pkl_file_name()
        ] + [
            CXPlain.get_prediction_model_h5_file_name(i)
            for i in range(num_models)
        ]

        for file_name in file_names:
            tmp_dir = TestExplanationModel.make_at_tmp(file_name)
            with self.assertRaises(ValueError):
                explainer.save(tmp_dir, overwrite=False)
Esempio n. 10
0
    def test_boston_housing_valid(self):
        (x_train, y_train), (x_test, y_test) = TestUtil.get_boston_housing()
        explained_model = RandomForestRegressor(n_estimators=64,
                                                max_depth=5,
                                                random_state=1)
        explained_model.fit(x_train, y_train)

        model_builder = MLPModelBuilder(num_layers=2,
                                        num_units=32,
                                        activation="relu",
                                        p_dropout=0.2,
                                        verbose=0,
                                        batch_size=32,
                                        learning_rate=0.001,
                                        num_epochs=3,
                                        early_stopping_patience=128)
        masking_operation = ZeroMasking()
        loss = mean_squared_error

        for num_models in [2, 5, 10]:
            explainer = CXPlain(explained_model,
                                model_builder,
                                masking_operation,
                                loss,
                                num_models=num_models)

            explainer.fit(x_train, y_train)
            eval_score = explainer.score(x_test, y_test)
            train_score = explainer.get_last_fit_score()
            median, confidence = explainer.predict(x_test,
                                                   confidence_level=0.95)

            self.assertTrue(median.shape == x_test.shape)
            self.assertTrue(confidence.shape == x_test.shape + (2, ))

            # Flatten predictions for iteration below.
            median = median.reshape((len(x_test), -1))
            confidence = confidence.reshape((len(x_test), -1, 2))

            for sample_idx in range(len(x_test)):
                for feature_idx in range(len(x_test[sample_idx])):
                    self.assertTrue(confidence[sample_idx][feature_idx][0] <=
                                    median[sample_idx][feature_idx] <=
                                    confidence[sample_idx][feature_idx][1])
                    self.assertTrue(
                        confidence[sample_idx][feature_idx][0] >= 0)
                    self.assertTrue(
                        confidence[sample_idx][feature_idx][1] >= 0)
Esempio n. 11
0
    def test_mnist_confidence_levels_valid(self):
        num_subsamples = 100
        (x_train,
         y_train), (x_test,
                    y_test) = TestUtil.get_mnist(flattened=False,
                                                 num_subsamples=num_subsamples)

        explained_model = MLPClassifier(solver='lbfgs',
                                        alpha=1e-5,
                                        hidden_layer_sizes=(64, 32),
                                        random_state=1)
        explained_model.fit(x_train.reshape((len(x_train), -1)), y_train)

        model_builder = MLPModelBuilder(num_layers=2,
                                        num_units=64,
                                        activation="relu",
                                        p_dropout=0.2,
                                        verbose=0,
                                        batch_size=256,
                                        learning_rate=0.001,
                                        num_epochs=3,
                                        early_stopping_patience=128)
        masking_operation = ZeroMasking()
        loss = categorical_crossentropy

        confidence_levels = [0.0, 1.0, 1.01, -0.01]
        for confidence_level in confidence_levels:
            downsample_factor = (2, 2)
            explainer = CXPlain(explained_model,
                                model_builder,
                                masking_operation,
                                loss,
                                num_models=2,
                                downsample_factors=downsample_factor,
                                flatten_for_explained_model=True)

            explainer.fit(x_train, y_train)

            with self.assertRaises(ValueError):
                _ = explainer.predict(x_test,
                                      confidence_level=confidence_level)
    def get_feature_importances(self, model):
        from cxplain import ZeroMasking
        from cxplain.util.test_util import TestUtil
        from cxplain.backend.masking.masking_util import MaskingUtil
        from cxplain.backend.causal_loss import calculate_delta_errors
        from cxplain.backend.numpy_math_interface import NumpyInterface

        x, y = self.test_set[0], self.test_set[1]
        masking = ZeroMasking()

        if isinstance(model, Pipeline):
            transform = model.steps[0][1]
            x = transform.transform(np.array(x))
            model = model.steps[1][1]

        num_features = np.array(x).shape[-1]
        max_num_feature_groups = int(
            np.rint(self.args["max_num_feature_groups"]))

        if max_num_feature_groups >= num_features:
            _, y_pred, all_y_pred_imputed = masking.get_predictions_after_masking(
                model,
                x,
                y,
                batch_size=len(x),
                downsample_factors=(1, ),
                flatten=True)
            auxiliary_outputs = y_pred
            all_but_one_auxiliary_outputs = all_y_pred_imputed
            all_but_one_auxiliary_outputs = TestUtil.split_auxiliary_outputs_on_feature_dim(
                all_but_one_auxiliary_outputs)

            delta_errors = calculate_delta_errors(
                np.expand_dims(y, axis=-1),
                auxiliary_outputs,
                all_but_one_auxiliary_outputs,
                NumpyInterface.binary_crossentropy,
                math_ops=NumpyInterface)

            group_importances = np.mean(delta_errors, axis=0)
            feature_groups = np.expand_dims(np.arange(x[0].shape[-1]),
                                            axis=-1).tolist()
        else:

            class ModelWrapper(object):
                def __init__(self, wrapped_model, real_data,
                             dummy_to_real_mapping):
                    self.wrapped_model = wrapped_model
                    self.real_data = real_data
                    self.dummy_to_real_mapping = dummy_to_real_mapping

                def map_from_dummy(self, dummy):
                    mask = np.ones(np.array(self.real_data).shape)
                    for i, row in enumerate(dummy):
                        for j, group in enumerate(self.dummy_to_real_mapping):
                            if row[j] == 0.:
                                mask[i, group] = 0
                    return self.real_data * mask

                def predict(self, x):
                    x = self.map_from_dummy(x)
                    y = MaskingUtil.predict_proxy(model, x)
                    if len(y.shape) == 1:
                        y = np.expand_dims(y, axis=-1)
                    return y

            num_groups = 1
            feature_groups = [np.random.permutation(np.arange(x[0].shape[-1]))]
            group_importances = [1.0]
            while num_groups < max_num_feature_groups:
                num_groups += 1

                # Recurse into largest relative importance group.
                did_find_splittable = False
                highest_importances = np.argsort(group_importances)[::-1]
                for highest_importance in highest_importances:
                    if len(feature_groups[highest_importance]) != 1:
                        did_find_splittable = True
                        break
                    else:
                        continue

                if not did_find_splittable:
                    # max_num_groups > len(features) - abort.
                    break

                rest = len(feature_groups[highest_importance]) % 2
                if rest != 0:
                    carry = feature_groups[highest_importance][-rest:].tolist()
                    feature_groups[highest_importance] = feature_groups[
                        highest_importance][:-rest]
                else:
                    carry = []
                feature_groups[highest_importance] = np.split(
                    feature_groups[highest_importance], 2)
                feature_groups[highest_importance][0] = np.array(
                    feature_groups[highest_importance][0].tolist() + carry)
                recombined = feature_groups[:highest_importance] + \
                             feature_groups[highest_importance] + \
                             feature_groups[highest_importance + 1:]
                assert 0 not in map(len, recombined)
                feature_groups = recombined
                wrapped_model = ModelWrapper(model, x, feature_groups)

                dummy_data = np.ones((len(x), num_groups))
                _, y_pred, all_y_pred_imputed = masking.get_predictions_after_masking(
                    wrapped_model,
                    dummy_data,
                    y,
                    batch_size=len(x),
                    downsample_factors=(1, ),
                    flatten=True)
                auxiliary_outputs = y_pred
                all_but_one_auxiliary_outputs = all_y_pred_imputed
                all_but_one_auxiliary_outputs = TestUtil.split_auxiliary_outputs_on_feature_dim(
                    all_but_one_auxiliary_outputs)

                delta_errors = calculate_delta_errors(
                    np.expand_dims(y, axis=-1),
                    auxiliary_outputs,
                    all_but_one_auxiliary_outputs,
                    NumpyInterface.binary_crossentropy,
                    math_ops=NumpyInterface)

                group_importances = np.mean(delta_errors, axis=0)
        return feature_groups, group_importances
Esempio n. 13
0
def cxpl(model_dir, data_dir, results_subdir, random_seed, resolution):
    np.random.seed(random_seed)
    tf.set_random_seed(np.random.randint(1 << 31))
    session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
    sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
    set_session(sess)

    # parser config
    config_file = model_dir+ "/config.ini"
    print("Config File Path:", config_file,flush=True)
    assert os.path.isfile(config_file)
    cp = ConfigParser()
    cp.read(config_file)

    output_dir = os.path.join(results_subdir, "classification_results/test")
    print("Output Directory:", output_dir,flush=True)
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)


    # default config
    image_dimension = cp["TRAIN"].getint("image_dimension")
    gan_resolution = resolution
    batch_size = cp["TEST"].getint("batch_size")
    use_best_weights = cp["TEST"].getboolean("use_best_weights")

    if use_best_weights:
        print("** Using BEST weights",flush=True)
        model_weights_path = os.path.join(results_subdir, "classification_results/train/best_weights.h5")
    else:
        print("** Using LAST weights",flush=True)
        model_weights_path = os.path.join(results_subdir, "classification_results/train/weights.h5")

    print("** DenseNet Input Resolution:", image_dimension, flush=True)
    print("** GAN Image Resolution:", gan_resolution, flush=True)

    # get test sample count
    test_dir = os.path.join(results_subdir, "inference/test")
    shutil.copy(test_dir+"/test.csv", output_dir)

    # Get class names 
    class_names = get_class_names(output_dir,"test")

    tfrecord_dir_te = os.path.join(data_dir, "test")
    test_counts, _ = get_sample_counts(output_dir, "test", class_names)
    
    # get indicies (all of csv file for validation)
    print("** test counts:", test_counts, flush=True)

    # compute steps
    test_steps = int(np.floor(test_counts / batch_size))
    print("** test_steps:", test_steps, flush=True)

    log2_record = int(np.log2(gan_resolution))
    record_file_ending = "*"+ np.str(log2_record)+ ".tfrecords"
    print("** resolution ", gan_resolution, " corresponds to ", record_file_ending, " TFRecord file.", flush=True)

    # Get Model
    # ------------------------------------
    input_shape=(image_dimension, image_dimension, 3)
    img_input = Input(shape=input_shape)

    base_model = DenseNet121(
        include_top = False, 
        weights = None,
        input_tensor = img_input,
        input_shape = input_shape,
        pooling = "avg")

    x = base_model.output
    predictions = Dense(len(class_names), activation="sigmoid", name="predictions")(x)
    model = Model(inputs=img_input, outputs = predictions)

    print(" ** load model from:", model_weights_path, flush=True)
    model.load_weights(model_weights_path)
    # ------------------------------------

    print("** load test generator **", flush=True)
    test_seq = TFWrapper(
            tfrecord_dir=tfrecord_dir_te,
            record_file_endings = record_file_ending,
            batch_size = batch_size,
            model_target_size = (image_dimension, image_dimension),
            steps = None,
            augment=False,
            shuffle=False,
            prefetch=True,
            repeat=False)

    print("** make prediction **", flush=True)
    test_seq.initialise() 
    x_all, y_all = test_seq.get_all_test_data()
    print("X-Test  Shape:", x_all.shape,flush=True)
    print("Y-Test  Shape:", y_all.shape,flush=True)

    print("----------------------------------------", flush=True)
    print("Test Model AUROC", flush=True)
    y_pred = model.predict(x_all)
    current_auroc = []
    for i in range(len(class_names)):
        try:
            score = roc_auc_score(y_all[:, i], y_pred[:, i])
        except ValueError:
            score = 0
        current_auroc.append(score)
        print(i+1,class_names[i],": ", score, flush=True)
    mean_auroc = np.mean(current_auroc)
    print("Mean auroc: ", mean_auroc,flush=True)

    print("----------------------------------------", flush=True)
    downscale_factor  = 8
    num_models_to_use = 3
    num_test_images   = 100
    print("Number of Models to use:", num_models_to_use, flush=True)
    print("Number of Test images:", num_test_images, flush=True)
    x_tr, y_tr = x_all[num_test_images:], y_all[num_test_images:]
    x_te, y_te = x_all[0:num_test_images], y_all[0:num_test_images]

    downsample_factors = (downscale_factor,downscale_factor)
    print("Downsample Factors:", downsample_factors,flush=True)
    model_builder = UNetModelBuilder(downsample_factors, num_layers=2, num_units=8, activation="relu",
                                     p_dropout=0.0, verbose=0, batch_size=32, learning_rate=0.001)
    print("Model build done.",flush=True)
    masking_operation = ZeroMasking()
    loss = categorical_crossentropy

    explainer = CXPlain(model, model_builder, masking_operation, loss, 
                    num_models=num_models_to_use, downsample_factors=downsample_factors, flatten_for_explained_model=False)
    print("Explainer build done.",flush=True)

    explainer.fit(x_tr, y_tr);
    print("Explainer fit done.",flush=True)

    try:
        attr, conf = explainer.explain(x_te, confidence_level=0.80)
        np.save(output_dir+"/x_cxpl.npy", x_te)
        np.save(output_dir+"/y_cxpl.npy", y_te)
        np.save(output_dir+"/attr.npy", attr)
        np.save(output_dir+"/conf.npy", conf)
        print("Explainer explain done and saved.",flush=True)
    except Exception as ef: print(ef,flush=True)