Esempio n. 1
0
def ious(atlbrs, btlbrs):
    """
    Compute cost based on IoU
    :type atlbrs: list[tlbr] | np.ndarray
    :type atlbrs: list[tlbr] | np.ndarray

    :rtype ious np.ndarray
    """
    ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float)
    if ious.size == 0:
        return ious

    ious = bbox_ious(
        np.ascontiguousarray(atlbrs, dtype=np.float),
        np.ascontiguousarray(btlbrs, dtype=np.float)
    )

    return ious
Esempio n. 2
0
def ious(atlbrs, btlbrs):
    """Compute cost based on IoU
    Arguments:
        atlbrs: np.array, list of boxes
        btlbrs: np.array, list of boxes
    Returns:
        ious: np.array, matrix of IoUs between each box
    Raises:
    """
    ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float)
    if ious.size == 0:
        return ious

    ious = bbox_ious(
        np.ascontiguousarray(atlbrs, dtype=np.float),
        np.ascontiguousarray(btlbrs, dtype=np.float),
    )

    return ious
Esempio n. 3
0
def visualize_comparison(dataroot,
                         seq,
                         save_dir,
                         result_dir_1,
                         result_dir_2,
                         compile_images_only=False):
    import pandas as pd
    from cython_bbox import bbox_overlaps as bbox_ious
    from tracker import matching
    from tracking_utils import visualization as vis

    res_1 = pd.read_csv(osp.join(result_dir_1, f"{seq}.txt"),
                        sep=',',
                        names=[
                            'frame', 'id', 'left', 'top', 'width', 'height',
                            'conf', 'misc1', 'misc2', 'misc3'
                        ])
    res_2 = pd.read_csv(osp.join(result_dir_2, f"{seq}.txt"),
                        sep=',',
                        names=[
                            'frame', 'id', 'left', 'top', 'width', 'height',
                            'conf', 'misc1', 'misc2', 'misc3'
                        ])
    img_root = osp.join(dataroot, seq, 'img1')
    save_root_1 = osp.join(osp.abspath(save_dir), osp.basename(result_dir_1),
                           seq)
    os.makedirs(save_root_1, exist_ok=True)
    save_root_2 = osp.join(osp.abspath(save_dir), osp.basename(result_dir_2),
                           seq)
    os.makedirs(save_root_2, exist_ok=True)

    if not compile_images_only:
        # for frame in np.unique(res_1['frame']):
        for frame in range(np.min(res_1['frame']), np.max(res_1['frame'])):
            # if frame == 250:
            #     break
            res_1_frame = res_1[res_1['frame'] == frame]
            res_2_frame = res_2[res_2['frame'] == frame]

            res_1_boxes_np = np.array(
                res_1_frame[['left', 'top', 'width', 'height']])
            res_1_boxes_np[:, 2:] += res_1_boxes_np[:, :2]
            res_2_boxes_np = np.array(
                res_2_frame[['left', 'top', 'width', 'height']])
            res_2_boxes_np[:, 2:] += res_2_boxes_np[:, :2]

            img1 = cv2.imread(osp.join(img_root, f"{frame:06d}.jpg"))
            img2 = cv2.imread(osp.join(img_root, f"{frame:06d}.jpg"))

            if res_1_boxes_np.shape[0] > 0 and res_2_boxes_np.shape[0] > 0:
                iou = bbox_ious(res_1_boxes_np, res_2_boxes_np)
                matches, u_res_1, u_res_2 = matching.linear_assignment(
                    -iou, thresh=-0.7)

                if len(matches) > 0:
                    # Plot the matchings in normal colors
                    matches_res_1 = res_1_frame.iloc[matches[:, 0]]
                    matches_res_2 = res_2_frame.iloc[matches[:, 1]]
                    # matches_res_2['id'].iloc[matches[:, 1]] = matches_res_1['id'].iloc[matches[:, 0]]
                    online_ids = matches_res_1['id'].to_list()
                    # online_ids = matches_res_2['id'].to_list()

                    matches_res_1_np = np.array(
                        matches_res_1[['left', 'top', 'width', 'height']])
                    matches_res_2_np = np.array(
                        matches_res_2[['left', 'top', 'width', 'height']])

                    online_im_1 = vis.plot_tracking(img1,
                                                    matches_res_1_np,
                                                    online_ids,
                                                    frame_id=frame,
                                                    fps=-1,
                                                    line_thickness=1)

                    online_im_2 = vis.plot_tracking(img2,
                                                    matches_res_2_np,
                                                    online_ids,
                                                    frame_id=frame,
                                                    fps=-1,
                                                    line_thickness=1)
                else:
                    online_im_1 = img1
                    online_im_2 = img2
                # ipdb.set_trace()

                # Plot the unmatched in thicker colors
                unmatches_res_1 = res_1_frame.iloc[u_res_1]
                unmatches_res_1_np = np.array(
                    unmatches_res_1[['left', 'top', 'width', 'height']])
                if len(unmatches_res_1) > 0:
                    if len(unmatches_res_1.shape) == 1:
                        unmatched_res_1_ids = [unmatches_res_1['id']]
                        scores = [unmatches_res_1['conf']]
                        unmatches_res_1_np = unmatches_res_1_np.reshape(1, -1)
                    else:
                        unmatched_res_1_ids = unmatches_res_1['id'].to_list()
                        scores = unmatches_res_1['conf'].to_list()

                    online_im_1 = vis.plot_tracking(online_im_1,
                                                    unmatches_res_1_np,
                                                    unmatched_res_1_ids,
                                                    frame_id=frame,
                                                    fps=-1,
                                                    line_thickness_unmatched=4)
                    # ipdb.set_trace()
                    print(
                        f"{len(unmatches_res_1)} unmatches found in frame {frame}"
                    )

                # Plot the unmatched in thicker colors
                unmatches_res_2 = res_2_frame.iloc[u_res_2]
                unmatches_res_2_np = np.array(
                    unmatches_res_2[['left', 'top', 'width', 'height']])
                if len(unmatches_res_2) > 0:
                    if len(unmatches_res_2.shape) == 1:
                        unmatched_res_2_ids = [unmatches_res_2['id']]
                        scores = [unmatches_res_2['conf']]
                        unmatches_res_2_np = unmatches_res_2_np.reshape(1, -1)
                    else:
                        unmatched_res_2_ids = unmatches_res_2['id'].to_list()
                        scores = unmatches_res_2['conf'].to_list()

                    online_im_2 = vis.plot_tracking(online_im_2,
                                                    unmatches_res_2_np,
                                                    unmatched_res_2_ids,
                                                    frame_id=frame,
                                                    fps=-1,
                                                    line_thickness_unmatched=4)

                cv2.imwrite(osp.join(save_root_1, f"{frame:06d}.jpg"),
                            online_im_1)
                cv2.imwrite(osp.join(save_root_2, f"{frame:06d}.jpg"),
                            online_im_2)
            else:
                if len(res_1_boxes_np) > 0 and len(res_2_boxes_np) == 0:
                    matches_res_1 = res_1_frame
                    matches_res_1_np = np.array(
                        matches_res_1[['left', 'top', 'width', 'height']])
                    if len(matches_res_1.shape) == 1:
                        online_ids = [matches_res_1['id']]
                        scores = [matches_res_1['conf']]
                    else:
                        online_ids = matches_res_1['id'].to_list()
                        scores = matches_res_1['conf'].to_list()
                    online_im_1 = vis.plot_tracking(img1,
                                                    matches_res_1_np,
                                                    online_ids,
                                                    frame_id=frame,
                                                    fps=-1,
                                                    line_thickness_unmatched=4)
                    cv2.imwrite(osp.join(save_root_1, f"{frame:06d}.jpg"),
                                online_im_1)
                    cv2.imwrite(osp.join(save_root_2, f"{frame:06d}.jpg"),
                                img2)
                if len(res_1_boxes_np) == 0 and len(res_2_boxes_np) > 0:
                    matches_res_2 = res_2_frame
                    matches_res_2_np = np.array(
                        matches_res_2[['left', 'top', 'width', 'height']])
                    if len(matches_res_2.shape) == 1:
                        online_ids = [matches_res_2['id']]
                        scores = [matches_res_2['conf']]
                    else:
                        online_ids = matches_res_2['id'].to_list()
                        scores = matches_res_2['conf'].to_list()

                    online_im_2 = vis.plot_tracking(img2,
                                                    matches_res_2_np,
                                                    online_ids,
                                                    frame_id=frame,
                                                    fps=-1,
                                                    line_thickness_unmatched=4)

                    cv2.imwrite(osp.join(save_root_1, f"{frame:06d}.jpg"),
                                img1)
                    cv2.imwrite(osp.join(save_root_2, f"{frame:06d}.jpg"),
                                online_im_2)
                if len(res_1_boxes_np) == 0 and len(res_1_boxes_np) == 0:
                    cv2.imwrite(osp.join(save_root_1, f"{frame:06d}.jpg"),
                                img1)
                    cv2.imwrite(osp.join(save_root_2, f"{frame:06d}.jpg"),
                                img2)
    cmd_str = 'ffmpeg -framerate 8 -y -f image2 -i {}/%06d.jpg -vcodec libx264 -c:v copy {}'.format(
        save_root_1, osp.join(save_root_1, f'GNN_{seq}.avi'))
    os.system(cmd_str)
    cmd_str = 'ffmpeg -framerate 8 -y -f image2 -i {}/%06d.jpg -vcodec libx264 -c:v copy {}'.format(
        save_root_2, osp.join(save_root_2, f'noGNN_{seq}.avi'))
    os.system(cmd_str)