Esempio n. 1
0
def predict_ch3(model, t_i, n=6):  # @save
    for X, y in t_i:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(model(X).argmax(axis=1))
    titles = [true + '\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(X[0:n].reshape(n, 28, 28), 1, n, titles=titles[0:n])
    plt.show()
Esempio n. 2
0
                y_hat = net(X)
                l = loss(y_hat, y).sum()
            l.backward()
            if trainer is None:
                d2l.sgd(params, lr, batch_size)
            else:
                trainer.step(batch_size)
            y = y.astype('float32')
            train_l_sum += l.asscalar()
            train_acc_sum += (y_hat.argmax(axis=1) == y).sum().asscalar()
            n += y.size
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f' %
              (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))


train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size,
          [W, b], lr)

for X, y in test_iter:
    break

true_labels = d2l.get_fashion_mnist_labels(y.asnumpy())
pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1).asnumpy())
titles = [
    truelabel + '\n' + predlabel
    for truelabel, predlabel in zip(true_labels, pred_labels)
]

d2l.show_fashion_mnist(X[0:9], titles[0:9])
import sys
sys.path.insert(0, '..')

import d2l
from mxnet.gluon import data as gdata
import sys
import time

mnist_train = gdata.vision.FashionMNIST(train=True)
mnist_test = gdata.vision.FashionMNIST(train=False)

feature, label = mnist_train[0]

X, y = mnist_train[0:9]
d2l.show_fashion_mnist(X, d2l.get_fashion_mnist_labels(y))

batch_size = 256
transformer = gdata.vision.transforms.ToTensor()

if sys.platform.startswith('win'):
    # 0 means no additional processes are needed to speed up the reading of
    # data
    num_workers = 0
else:
    num_workers = 4

train_iter = gdata.DataLoader(mnist_train.transform_first(transformer),
                              batch_size,
                              shuffle=True,
                              num_workers=num_workers)