def fit_n_plot_with_pytorch(lambd, num_inputs, num_outputs, lr, num_epochs,
                            train_iter, train_features, train_labels,
                            test_features, test_labels):
    net = torch.nn.Linear(num_inputs, num_outputs)
    loss = torch.nn.MSELoss()
    for param in net.parameters():
        param.data.uniform_()

    optimizer = torch.optim.SGD(net.parameters(), lr, weight_decay=lambd)

    train_ls, test_ls = [], []
    for epoch in range(num_epochs):
        for X, y in train_iter:
            with torch.enable_grad():
                optimizer.zero_grad()
                y_pred = net(X)
                loss_val = loss(y_pred, y)
            loss_val.backward()
            optimizer.step()

        train_ls.append(
            torch.mean(loss(net(train_features), train_labels)).item())
        test_ls.append(
            torch.mean(loss(net(test_features), test_labels)).item())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('L2 norm of w:', net[0].weight.norm().item())
Esempio n. 2
0
def fit_and_plot_gluon(wd):
    net = nn.Sequential()
    net.add(nn.Dense(1))
    net.initialize(init.Normal(sigma=1))
    loss = gloss.L2Loss()
    # The weight parameter has been decayed. Weight names generally end with
    # "weight".
    trainer_w = gluon.Trainer(net.collect_params('.*weight'), 'sgd',
                              {'learning_rate': lr, 'wd': wd})
    # The bias parameter has not decayed. Bias names generally end with "bias"
    trainer_b = gluon.Trainer(net.collect_params('.*bias'), 'sgd',
                              {'learning_rate': lr})
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            with autograd.record():
                l = loss(net(X), y)
            l.backward()
            # Call the step function on each of the two Trainer instances to
            # update the weight and bias separately
            trainer_w.step(batch_size)
            trainer_b.step(batch_size)
        train_ls.append(loss(net(train_features),
                             train_labels).mean().asscalar())
        test_ls.append(loss(net(test_features),
                            test_labels).mean().asscalar())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('L2 norm of w:', net[0].weight.data().norm().asscalar())
Esempio n. 3
0
def train_and_pred(train_features, test_feature, train_labels, test_data,
                   num_epochs, lr, weight_decay, batch_size):
    net = get_net()
    train_ls, _ = train(net, train_features, train_labels, None, None,
                        num_epochs, lr, weight_decay, batch_size)
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
    print('train rmse %f' % train_ls[-1])
    # Apply the network to the test set
    preds = net(test_features).asnumpy()
    # Reformat it for export to Kaggle
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
    submission.to_csv('submission.csv', index=False)
Esempio n. 4
0
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
           batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
                         range(1, num_epochs + 1), valid_ls,
                         ['train', 'valid'])
        print('fold %d, train rmse: %f, valid rmse: %f' %
              (i, train_ls[-1], valid_ls[-1]))
    return train_l_sum / k, valid_l_sum / k
Esempio n. 5
0
def fit_and_plot(lambd):
    w, b = init_params()
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            with autograd.record():
                # The L2 norm penalty term has been added
                l = loss(net(X, w, b), y) + lambd * l2_penalty(w)
            l.backward()
            d2l.sgd([w, b], lr, batch_size)
        train_ls.append(loss(net(train_features, w, b),
                             train_labels).mean().asscalar())
        test_ls.append(loss(net(test_features, w, b),
                            test_labels).mean().asscalar())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('l2 norm of w:', w.norm().asscalar())
def fit_n_plot(lambd, num_inputs, num_epochs, train_iter, net, loss,
               grad_descent, lr, batch_size, train_features, train_labels,
               test_features, test_labels):
    w, b = init_params(num_inputs)
    train_ls, test_ls = [], []
    for epoch in range(num_epochs):
        for X, y in train_iter:
            with torch.enable_grad():
                y_pred = net(X, w, b)
                loss_val = loss(y_pred, y).sum() + lambd * l2_penalty(w)
            loss_val.backward()
            grad_descent([w, b], lr, batch_size)

        with torch.no_grad():
            train_ls.append(
                torch.mean(loss(net(train_features, w, b),
                                train_labels)).item())
            test_ls.append(
                torch.mean(loss(net(test_features, w, b), test_labels)).item())

    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('l2 norm of w:', torch.norm(w).item())