Esempio n. 1
0
def kedmd(X, Y, k, epsilon=0, evs=5, operator='P'):
    '''
    Kernel EDMD for the Koopman or Perron-Frobenius operator. The matrices X and Y
    contain the input data.

    :param k:        kernel, see d3s.kernels
    :param epsilon:  regularization parameter
    :param evs:      number of eigenvalues/eigenvectors
    :param operator: 'K' for Koopman or 'P' for Perron-Frobenius (note that the default is P here)
    :return:         eigenvalues d and eigenfunctions evaluated in X
    '''
    if isinstance(X, list):  # e.g., for strings
        n = len(X)
    else:
        n = X.shape[1]

    G_0 = _kernels.gramian(X, k)
    G_1 = _kernels.gramian2(X, Y, k)
    if operator == 'K': G_1 = G_1.T

    A = _sp.linalg.pinv(G_0 + epsilon * _np.eye(n), rcond=1e-15) @ G_1
    d, V = sortEig(A, evs)
    if operator == 'K': V = G_0 @ V
    return (d, V)
Esempio n. 2
0
k = kernels.gaussianKernel(0.5)

#%% apply kernel generator EDMD
epsilon = 0.1
S = np.einsum('ijk,ljk->ilk', Z, Z)  # sigma \cdot sigma^T

G_00 = kernels.gramian(X, k)
G_10 = np.zeros((m, m))
for i in range(m):
    for j in range(m):
        G_10[i, j] = Y[:, i].T @ k.diff(X[:, i], X[:, j]) + 0.5 * np.sum(
            S[:, :, i] * k.ddiff(X[:, i], X[:, j]), axis=(0, 1))

A, _, _, _ = np.linalg.lstsq(G_00, G_10, rcond=1e-12)
d, V = algorithms.sortEig(A, evs=m, which='LM')
W = kernels.gramian2(Omega.midpointGrid(), X, k) @ V

#%% plot eigenvalues
plt.figure()
plt.plot(d, '.')
plt.title('Spectrum')

#%% plot eigenfunctions
ind, = np.where(d < -0.1)
for i in ind[:6]:
    plt.figure()
    Omega.plot(np.real(W[:, i] / np.amax(abs(W[:, i]))))
    plt.ylim((-1, 1))
    plt.title('lambda = %f' % np.real(d[i]))

#%% direct kernelization for kernels with finite-dimensional feature space
Esempio n. 3
0
k = kernels.gaussianKernel(0.3)

#%% apply kernel generator EDMD
evs = 4
G_00 = kernels.gramian(X, k)
G_10 = np.zeros((m, m))
for i in range(m):
    for j in range(m):
        G_10[i, j] = c0(X[:, i]) * k(X[:, i], X[:, j]) + np.sum(
            c2(X[:, i]) * k.ddiff(X[:, i], X[:, j]), axis=(0, 1))

A, _, _, _ = np.linalg.lstsq(G_00, G_10, rcond=1e-12)
d, V = algorithms.sortEig(A, evs=evs, which='SR')

c = Omega.midpointGrid()
W = kernels.gramian2(c, X, k) @ V

#%% plot spectrum
plt.figure()
plt.plot(np.real(d), '.')
plt.title('Spectrum')

printVector(np.real(d), 'd')

#%% plot eigenfunctions
for i in range(evs):
    plt.figure()
    j = evs - i - 1
    Omega.plot(np.real(W[:, j] / np.amax(abs(W[:, j]))))

    wa = psi[i](c)
Esempio n. 4
0
N = G_00[isBoundary, :].T

#%% solve BVP
epsilon = 1e-12

G_10 = np.zeros((m, m))
for i in range(m):
    for j in range(m):
        G_10[i, j] = -h**2/(2*m0) * k_a.laplace(X[:, i], X[:, j]) # no term related to the potential since V is 0 inside the box

d, V = ceig.hcgeig(G_10, G_00 + epsilon*np.eye(m), N)

# evaluate eigenfunctions in midpoints of the grid
Omega2 = domain.discretization(bounds, np.array([30, 30]))
c, _ = Omega2.vertexGrid()
W = kernels.gramian2(c, X, k_a) @ V

#%% plot spectrum
plt.figure(2)
plt.clf()
plt.plot(d, '.')
plt.title('Spectrum')

#%% plot eigenfunctions
ind, = np.where(abs(d) > 1.0)
fig = 3
for i in ind[-3:][::-1]:
    #plt.figure(fig)
    plt.figure()
    plt.clf()
    fig += 1