def test_vae(): minibatch_size = 100 random_state = np.random.RandomState(1999) graph = OrderedDict() X_sym, y_sym = add_datasets_to_graph([X, y], ["X", "y"], graph) l1_enc = relu_layer([X_sym, y_sym], graph, 'l1_enc', proj_dim=20, random_state=random_state) mu = linear_layer([l1_enc], graph, 'mu', proj_dim=10, random_state=random_state) log_sigma = linear_layer([l1_enc], graph, 'log_sigma', proj_dim=10, random_state=random_state) samp = gaussian_log_sample_layer([mu], [log_sigma], graph, 'gaussian_log_sample', random_state=random_state) l1_dec = relu_layer([samp], graph, 'l1_dec', proj_dim=20, random_state=random_state) out = sigmoid_layer([l1_dec], graph, 'out', proj_dim=X.shape[1], random_state=random_state) kl = gaussian_log_kl([mu], [log_sigma], graph, 'gaussian_kl').mean() cost = binary_crossentropy(out, X_sym).mean() + kl params, grads = get_params_and_grads(graph, cost) learning_rate = 0.001 opt = sgd(params) updates = opt.updates(params, grads, learning_rate) train_function = theano.function([X_sym, y_sym], [cost], updates=updates, mode="FAST_COMPILE") iterate_function(train_function, [X, y], minibatch_size, list_of_output_names=["cost"], n_epochs=1)
def test_vae(): minibatch_size = 10 random_state = np.random.RandomState(1999) graph = OrderedDict() X_sym = add_datasets_to_graph([X], ["X"], graph) l1_enc = softplus_layer([X_sym], graph, 'l1_enc', proj_dim=100, random_state=random_state) mu = linear_layer([l1_enc], graph, 'mu', proj_dim=50, random_state=random_state) log_sigma = linear_layer([l1_enc], graph, 'log_sigma', proj_dim=50, random_state=random_state) samp = gaussian_log_sample_layer([mu], [log_sigma], graph, 'gaussian_log_sample', random_state=random_state) l1_dec = softplus_layer([samp], graph, 'l1_dec', proj_dim=100, random_state=random_state) out = sigmoid_layer([l1_dec], graph, 'out', proj_dim=X.shape[1], random_state=random_state) kl = gaussian_log_kl([mu], [log_sigma], graph, 'gaussian_kl').mean() cost = binary_crossentropy(out, X_sym).mean() + kl params, grads = get_params_and_grads(graph, cost) learning_rate = 0.00000 opt = sgd(params, learning_rate) updates = opt.updates(params, grads) fit_function = theano.function([X_sym], [cost], updates=updates, mode="FAST_COMPILE") cost_function = theano.function([X_sym], [cost], mode="FAST_COMPILE") checkpoint_dict = {} train_indices = np.arange(len(X)) valid_indices = np.arange(len(X)) early_stopping_trainer(fit_function, cost_function, train_indices, valid_indices, checkpoint_dict, [X], minibatch_size, list_of_train_output_names=["cost"], valid_output_name="valid_cost", n_epochs=1)
l1_dec = softplus_layer([samp, y_sym], graph, 'l1_dec', n_dec_layer, random_state=random_state) l2_dec = softplus_layer([l1_dec], graph, 'l2_dec', n_dec_layer, random_state=random_state) l3_dec = softplus_layer([l2_dec], graph, 'l3_dec', n_dec_layer, random_state=random_state) out = sigmoid_layer([l3_dec], graph, 'out', n_input, random_state=random_state) nll = binary_crossentropy(out, X_sym).mean() # log p(x) = -nll so swap sign # want to minimize cost in optimization so multiply by -1 base_cost = -1 * (-nll - kl) # -log q(y | x) is negative log likelihood already alpha = 0.1 err = categorical_crossentropy(y_pred, y_sym).mean() cost = base_cost + alpha * err params, grads = get_params_and_grads(graph, cost) learning_rate = 0.0001 opt = adam(params, learning_rate)
X_mb, X_mb_mask, y_mb, y_mb_mask = next(train_itr) train_itr.reset() valid_itr = minibatch_iterator([X, y], minibatch_size, make_mask=True, axis=1) datasets_list = [X_mb, X_mb_mask, y_mb, y_mb_mask] names_list = ["X", "X_mask", "y", "y_mask"] X_sym, X_mask_sym, y_sym, y_mask_sym = add_datasets_to_graph( datasets_list, names_list, graph, list_of_test_values=datasets_list) n_hid = 256 n_out = 8 h = location_attention_tanh_recurrent_layer( [X_sym], [y_sym], X_mask_sym, y_mask_sym, n_hid, graph, 'l1_att_rec', random_state=random_state) X_hat = sigmoid_layer([h], graph, 'output', proj_dim=n_out, random_state=random_state) cost = binary_crossentropy(X_hat, X_sym).mean() cost = masked_cost(cost, X_mask_sym).mean() params, grads = get_params_and_grads(graph, cost) opt = adadelta(params) updates = opt.updates(params, grads) fit_function = theano.function([X_sym, X_mask_sym, y_sym, y_mask_sym], [cost], updates=updates) valid_function = theano.function([X_sym, X_mask_sym, y_sym, y_mask_sym], [cost]) checkpoint_dict = {} checkpoint_dict["fit_function"] = fit_function checkpoint_dict["valid_function"] = valid_function TL = TrainingLoop(fit_function, valid_function, train_itr, valid_itr, checkpoint_dict=checkpoint_dict, list_of_train_output_names=["train_cost"],
# encode path aka q l1_enc = softplus_layer([X_sym], graph, 'l1_enc', n_enc_layer[0], random_state) l2_enc = softplus_layer([l1_enc], graph, 'l2_enc', n_enc_layer[1], random_state) code_mu = linear_layer([l2_enc], graph, 'code_mu', n_code, random_state) code_log_sigma = linear_layer([l2_enc], graph, 'code_log_sigma', n_code, random_state) kl = gaussian_log_kl([code_mu], [code_log_sigma], graph, 'kl').mean() samp = gaussian_log_sample_layer([code_mu], [code_log_sigma], graph, 'samp', random_state) # decode path aka p l1_dec = softplus_layer([samp], graph, 'l1_dec', n_dec_layer[0], random_state) l2_dec = softplus_layer([l1_dec], graph, 'l2_dec', n_dec_layer[1], random_state) out = sigmoid_layer([l2_dec], graph, 'out', n_input, random_state) nll = binary_crossentropy(out, X_sym).mean() # log p(x) = -nll so swap sign # want to minimize cost in optimization so multiply by -1 cost = -1 * (-nll - kl) params, grads = get_params_and_grads(graph, cost) learning_rate = 0.0003 opt = adam(params) updates = opt.updates(params, grads, learning_rate) # Checkpointing try: checkpoint_dict = load_last_checkpoint() fit_function = checkpoint_dict["fit_function"]
def test_vae(): minibatch_size = 10 random_state = np.random.RandomState(1999) graph = OrderedDict() X_sym = add_datasets_to_graph([X], ["X"], graph) l1_enc = softplus_layer([X_sym], graph, 'l1_enc', proj_dim=100, random_state=random_state) mu = linear_layer([l1_enc], graph, 'mu', proj_dim=50, random_state=random_state) log_sigma = linear_layer([l1_enc], graph, 'log_sigma', proj_dim=50, random_state=random_state) samp = gaussian_log_sample_layer([mu], [log_sigma], graph, 'gaussian_log_sample', random_state=random_state) l1_dec = softplus_layer([samp], graph, 'l1_dec', proj_dim=100, random_state=random_state) out = sigmoid_layer([l1_dec], graph, 'out', proj_dim=X.shape[1], random_state=random_state) kl = gaussian_log_kl([mu], [log_sigma], graph, 'gaussian_kl').mean() cost = binary_crossentropy(out, X_sym).mean() + kl params, grads = get_params_and_grads(graph, cost) learning_rate = 0.00000 opt = sgd(params) updates = opt.updates(params, grads, learning_rate) fit_function = theano.function([X_sym], [cost], updates=updates, mode="FAST_COMPILE") cost_function = theano.function([X_sym], [cost], mode="FAST_COMPILE") checkpoint_dict = {} train_indices = np.arange(len(X)) valid_indices = np.arange(len(X)) early_stopping_trainer(fit_function, cost_function, checkpoint_dict, [X], minibatch_size, train_indices, valid_indices, fit_function_output_names=["cost"], cost_function_output_name="valid_cost", n_epochs=1)