Esempio n. 1
0
def test_switch_phases(python_method_impl):
    from dagrt.language import CodeBuilder, ExecutionPhase

    with CodeBuilder(name="state_1") as builder_1:
        builder_1(var("<state>x"), 1)
        builder_1.switch_phase("state_2")
    with CodeBuilder(name="state_2") as builder_2:
        builder_2.yield_state(var("<state>x"), "x", 0, "final")

    code = DAGCode(phases={
        "state_1":
        ExecutionPhase(name="state_1",
                       next_phase="state_1",
                       statements=builder_1.statements),
        "state_2":
        ExecutionPhase(name="state_2",
                       next_phase="state_2",
                       statements=builder_2.statements)
    },
                   initial_phase="state_1")
    from utils import execute_and_return_single_result
    result = execute_and_return_single_result(python_method_impl,
                                              code,
                                              initial_context={"x": 0},
                                              max_steps=2)
    assert result == 1
Esempio n. 2
0
    def generate(self, explainer=None):
        """
        :arg explainer: a subclass of :class:`SchemeExplainerBase`, possibly
            :class:`TextualSchemeExplainer`, or *None*.
        :returns: :class:`dagrt.language.DAGCode`
        """
        if explainer is None:
            explainer = SchemeExplainerBase()

        from dagrt.language import DAGCode, CodeBuilder

        with CodeBuilder(name="initialization") as cb_init:
            self.emit_initialization(cb_init)

        with CodeBuilder(name="primary") as cb_primary:
            self.emit_adams_method(cb_primary, explainer)

        with CodeBuilder(name="bootstrap") as cb_bootstrap:
            self.emit_rk_bootstrap(cb_bootstrap)

        return DAGCode(phases={
            "initialization":
            cb_init.as_execution_phase("bootstrap"),
            "bootstrap":
            cb_bootstrap.as_execution_phase("bootstrap"),
            "primary":
            cb_primary.as_execution_phase("primary"),
        },
                       initial_phase="initialization")
Esempio n. 3
0
def adaptive_rk_method(tol):
    """
    The difference between the results of Euler's method
       y_e = y_n + h f(t_n, y_n)
    and Heun's method
       y_h = y_n + h / 2 (f(t_n, y_n), f(t_n + dt, y_e))
    can be used as an estimate of the high order error term in Euler's method.

    This allows us to adapt the time step so that the local error falls within a
    specified tolerance.
    """

    # Set up variables
    y = var("<state>y")
    g = var("<func>g")
    y_e = var("y_e")
    y_h = var("y_h")
    dt = var("<dt>")
    t = var("<t>")
    dt_old = var("dt_old")

    # Helpers for expression fragments
    def norm(val):
        return var("<builtin>norm_2")(val)

    def dt_scaling(tol, err):
        # Return a suitable scaling factor for dt.
        # Ensure to guard against excessive increase or divide-by-zero.
        from pymbolic.primitives import Max, Min
        return Min(((tol / Max((1.0e-16, norm(err))))**(1 / 2), 2.0))

    # Code for the main state
    with CodeBuilder("adaptrk") as cb:
        # Euler
        cb(y_e, y + dt * g(t, y))

        # Heun
        cb(y_h, y + dt / 2 * (g(t, y) + g(t + dt, y_e)))

        # Adaptation
        cb(dt_old, dt)
        cb(dt, dt * dt_scaling(tol, y_h - y_e))

        # Accept or reject step
        with cb.if_(norm(y_h - y_e), ">=", tol):
            cb.fail_step()
        with cb.else_():
            cb(y, y_h)
            cb(t, t + dt_old)

    return DAGCode.from_phases_list([cb.as_execution_phase("adaptrk")],
                                    "adaptrk")
Esempio n. 4
0
def demo_rk_adaptive():
    from dagrt.language import CodeBuilder
    from pymbolic import var

    # Set tolerance
    tol = 1e-3
    # Bulk declare symbolic names
    k1, k2, k3, k4, t, dt, dt_old, y, y_hi, y_lo, f, norm = (
        var(name) for name in
        "k1 k2 k3 k4 <t> <dt> dt_old <state>y y_hi y_lo <func>f <builtin>norm_inf"
        .split())  # noqa

    with CodeBuilder("primary") as cb:
        # Calculate the RK stage values
        cb(k1, f(t, y))
        cb(k2, f(t + 1 / 2 * dt, y + dt * (1 / 2 * k1)))
        cb(k3, f(t + 3 / 4 * dt, y + dt * (3 / 4 * k2)))
        cb(k4, f(t + dt, y + dt * (2 / 9 * k1 + 1 / 3 * k2 + 4 / 9 * k3)))
        # Compute the low and high order solutions
        cb(y_lo, y + dt * (7 / 24 * k1 + 1 / 4 * k2 + 1 / 3 * k3 + 1 / 8 * k4))
        cb(y_hi, y + dt * (2 / 9 * k1 + 1 / 3 * k2 + 4 / 9 * k3))
        # Save the value of dt
        cb(dt_old, dt)
        # Update dt based on the error estimate
        err_est = norm(y_lo - y_hi)
        order = 3
        cb(dt, 0.9 * dt * (tol / err_est)**(1 / order))
        # Adapt the step size
        with cb.if_(err_est, "<=", tol):
            # Update t and y
            cb(y, y_hi)
            cb(t, t + dt_old)
            cb.yield_state(expression=y,
                           component_id="y",
                           time=t,
                           time_id=None)  # noqa
        with cb.else_():
            cb.fail_step()

    from dagrt.language import DAGCode
    code = DAGCode(
        phases={"primary": cb.as_execution_phase(next_phase="primary")},
        initial_phase="primary")

    print(code)

    # Generate and run the method.
    from dagrt.codegen import PythonCodeGenerator
    cls = PythonCodeGenerator("RKAdaptiveMethod").get_class(code)
    eocrec = get_convergence_data(cls, problem=KapsProblem(0.001))
    print(eocrec.pretty_print())
Esempio n. 5
0
    def generate(self, solver_hook):
        """Return code that implements the implicit Euler method for the single
        state component supported."""

        with CodeBuilder(name="primary") as cb:
            self._make_primary(cb)

        code = DAGCode.from_phases_list(
            [cb.as_execution_phase(next_phase="primary")],
            initial_phase="primary")

        from leap.implicit import replace_AssignImplicit

        return replace_AssignImplicit(code,
                                      {self.SOLVER_EXPRESSION_ID: solver_hook})
Esempio n. 6
0
    def generate(self):
        """
        :returns: :class:`dagrt.language.DAGCode`
        """
        comp_id = self.component_id

        from pymbolic import var
        dt = var("<dt>")
        t = var("<t>")
        residual = var("<p>residual_" + comp_id)
        state = var("<state>" + comp_id)
        rhs_func = var(self.rhs_func_name)

        with CodeBuilder("initialization") as cb:
            cb(residual, 0)

        cb_init = cb

        # Primary.

        rhs_val = var("rhs_val")

        with CodeBuilder("primary") as cb:
            # https://github.com/PyCQA/pylint/issues/3387
            for a, b, c in self.coeffs:  # pylint: disable=not-an-iterable
                cb(rhs_val, rhs_func(t=t + c * dt, **{comp_id: state}))
                cb(residual, a * residual + dt * rhs_val)
                new_state_expr = state + b * residual

                if self.state_filter is not None:
                    new_state_expr = self.state_filter(
                        **{comp_id: new_state_expr})

                cb(state, new_state_expr)

            cb.yield_state(state, comp_id, t + dt, "final")
            cb(t, t + dt)

        cb_primary = cb

        from dagrt.language import DAGCode
        return DAGCode(phases={
            "initial":
            cb_init.as_execution_phase(next_phase="primary"),
            "primary":
            cb_primary.as_execution_phase(next_phase="primary")
        },
                       initial_phase="initial")
Esempio n. 7
0
def fuse_two_dags(dag1,
                  dag2,
                  phase_correspondences=None,
                  should_disambiguate_name=None):
    from dagrt.language import DAGCode
    new_phases = {}
    for phase_name in frozenset(dag1.phases) | frozenset(dag2.phases):
        phase1 = dag1.phases.get(phase_name)
        phase2 = dag2.phases.get(phase_name)

        new_phases[phase_name] = fuse_two_phases(phase_name, phase1, phase2)

    if dag1.initial_phase != dag2.initial_phase:
        raise ValueError("DAGs don't agree on initial phase")

    return DAGCode(new_phases, dag1.initial_phase)
Esempio n. 8
0
    def generate(self):
        """
        :returns: a :class:`~dagrt.language.DAGCode` that can be used to
            generate code for this method.
        """

        # {{{ check coefficients are explicit

        nstages = len(self.alpha)
        for n in range(1, nstages + 1):
            if len(self.alpha[n - 1]) > n or len(self.beta[n - 1]) > n:
                raise ValueError("only explicit SSP schemes are supported")

        # }}}

        # {{{ primary phase

        comp_id = self.component_id

        with CodeBuilder(name="primary") as cb:
            stages = [self.state
                      ] + [cb.fresh_var(f"s{i}") for i in range(nstages)]

            for i in range(0, nstages):
                states = sum(alpha * stages[j]
                             for j, alpha in enumerate(self.alpha[i]))
                rhss = sum(beta * self.rhs_func(t=self.t + self.c[i] * self.dt,
                                                **{comp_id: stages[j]})
                           for j, beta in enumerate(self.beta[i]))

                expr = states + self.dt * rhss
                if self.state_filter is not None:
                    expr = self.state_filter(**{comp_id: expr})

                cb(stages[i + 1], expr)

            # finish
            cb(self.state, stages[-1])
            cb.yield_state(self.state, comp_id, self.t + self.dt, "final")
            cb(self.t, self.t + self.dt)

        # }}}

        return DAGCode(phases={
            "primary": cb.as_execution_phase(next_phase="primary"),
        },
                       initial_phase="primary")
Esempio n. 9
0
def demo_rk_implicit():
    from dagrt.language import CodeBuilder
    from pymbolic import var

    k1, k2, t, dt, y, f = (
        var(name) for name in
        "k1 k2 <t> <dt> <state>y <func>f".split())

    gamma = (2 - 2**0.5) / 2

    with CodeBuilder("primary") as cb:
        cb.assign_implicit_1(
            k1,
            solve_component=k1,
            expression=k1 - f(t + gamma * dt, y + dt * gamma * k1),
            guess=f(t, y))
        cb.assign_implicit_1(
            k2,
            solve_component=k2,
            expression=k2 - f(t + dt, y + dt * ((1 - gamma) * k1 + gamma * k2)),  # noqa
            guess=k1)
        cb(y, y + dt * ((1 - gamma) * k1 + gamma * k2))
        cb(t, t + dt)
        cb.yield_state(y, "y", t, None)

    from dagrt.language import DAGCode
    code = DAGCode(phases={
        "primary": cb.as_execution_phase(next_phase="primary")
        },
        initial_phase="primary")

    def solver_hook(solve_expr, unknown, solver_id, guess):
        from dagrt.expression import match, substitute
        pieces = match(
            "k - <func>rhs(time, y + dt * (c0 + c1 * k))",
            solve_expr,
            pre_match={"k": unknown})
        return substitute("-10 * (dt * c0 + y) / (10 * dt * c1 + 1)", pieces)

    from leap.implicit import replace_AssignImplicit
    code = replace_AssignImplicit(code, solver_hook)
    print(code)

    from dagrt.codegen import PythonCodeGenerator
    IRKMethodBuilder = PythonCodeGenerator("IRKMethodBuilder").get_class(code)
    eocrec = get_convergence_data(IRKMethodBuilder, SimpleDecayProblem())
    print(eocrec.pretty_print())
Esempio n. 10
0
def test_CodeBuilder_restart_step(python_method_impl):
    with CodeBuilder("init") as builder_init:
        builder_init("<p>x", "0")

    with CodeBuilder("state1") as builder1:
        builder1("<p>x", "<p>x + 1")
        with builder1.if_("<p>x == 1"):
            builder1.restart_step()

    with CodeBuilder("state2") as builder2:
        builder2.yield_state(var("<p>x"), "x", 0, "final")

    phases = [
        builder_init.as_execution_phase(next_phase="state1"),
        builder1.as_execution_phase(next_phase="state2"),
        builder2.as_execution_phase(next_phase="state2")
    ]
    code = DAGCode.from_phases_list(phases, "init")

    result = execute_and_return_single_result(python_method_impl,
                                              code,
                                              max_steps=4)
    assert result == 2
Esempio n. 11
0
    def generate_butcher(self, stage_coeff_set_names, stage_coeff_sets,
                         rhs_funcs, estimate_coeff_set_names,
                         estimate_coeff_sets):
        """
        :arg stage_coeff_set_names: a list of names/string identifiers
            for stage coefficient sets
        :arg stage_coeff_sets: a mapping from set names to stage coefficients
        :arg rhs_funcs: a mapping from set names to right-hand-side
            functions
        :arg estimate_coeffs_set_names: a list of names/string identifiers
            for estimate coefficient sets
        :arg estimate_coeffs_sets: a mapping from estimate coefficient set
            names to cofficients.
        """

        from pymbolic import var
        comp = self.component_id

        dt = self.dt
        t = self.t
        state = self.state

        nstages = len(self.c)

        # {{{ check coefficients for plausibility

        for name in stage_coeff_set_names:
            for istage in range(nstages):
                coeff_sum = sum(stage_coeff_sets[name][istage])
                assert abs(coeff_sum - self.c[istage]) < 1e-12, (
                    name, istage, coeff_sum, self.c[istage])

        # }}}

        # {{{ initialization

        last_rhss = {}

        with CodeBuilder(name="initialization") as cb:
            for name in stage_coeff_set_names:
                if (name in self.recycle_last_stage_coeff_set_names
                        and _is_first_stage_same_as_last_stage(
                            self.c, stage_coeff_sets[name])):
                    last_rhss[name] = var("<p>last_rhs_" + name)
                    cb(last_rhss[name], rhs_funcs[name](t=t, **{comp: state}))

        cb_init = cb

        # }}}

        stage_rhs_vars = {}
        rhs_var_to_unknown = {}
        for name in stage_coeff_set_names:
            stage_rhs_vars[name] = [
                cb.fresh_var(f"rhs_{name}_s{i}") for i in range(nstages)
            ]

            # These are rhss if they are not yet known and pending an implicit solve.
            for i, rhsvar in enumerate(stage_rhs_vars[name]):
                unkvar = cb.fresh_var(f"unk_{name}_s{i}")
                rhs_var_to_unknown[rhsvar] = unkvar

        knowns = set()

        # {{{ stage loop

        last_state_est_var = cb.fresh_var("last_state_est")
        last_state_est_var_valid = False

        with CodeBuilder(name="primary") as cb:
            equations = []
            unknowns = set()

            def make_known(v):
                unknowns.discard(v)
                knowns.add(v)

            for istage in range(nstages):
                for name in stage_coeff_set_names:
                    c = self.c[istage]
                    my_rhs = stage_rhs_vars[name][istage]

                    if (name in self.recycle_last_stage_coeff_set_names
                            and istage == 0
                            and _is_first_stage_same_as_last_stage(
                                self.c, stage_coeff_sets[name])):
                        cb(my_rhs, last_rhss[name])
                        make_known(my_rhs)

                    else:
                        is_implicit = False

                        state_increment = 0
                        for src_name in stage_coeff_set_names:
                            coeffs = stage_coeff_sets[src_name][istage]
                            for src_istage, coeff in enumerate(coeffs):
                                rhsval = stage_rhs_vars[src_name][src_istage]
                                if rhsval not in knowns:
                                    unknowns.add(rhsval)
                                    is_implicit = True

                                state_increment += dt * coeff * rhsval

                        state_est = state + state_increment
                        if (self.state_filter is not None and not (
                                # reusing last output state
                                c == 0 and all(
                                    len(stage_coeff_sets[src_name][istage]) ==
                                    0 for src_name in stage_coeff_set_names))):
                            state_est = self.state_filter(state_est)

                        if is_implicit:
                            rhs_expr = rhs_funcs[name](t=t + c * dt,
                                                       **{
                                                           comp: state_est
                                                       })

                            from dagrt.expression import collapse_constants
                            solve_expression = collapse_constants(
                                my_rhs - rhs_expr,
                                list(unknowns) + [self.state], cb.assign,
                                cb.fresh_var)
                            equations.append(solve_expression)

                            if istage + 1 == nstages:
                                last_state_est_var_valid = False

                        else:
                            if istage + 1 == nstages:
                                cb(last_state_est_var, state_est)
                                state_est = last_state_est_var
                                last_state_est_var_valid = True

                            rhs_expr = rhs_funcs[name](t=t + c * dt,
                                                       **{
                                                           comp: state_est
                                                       })

                            cb(my_rhs, rhs_expr)
                            make_known(my_rhs)

                    # {{{ emit solve if possible

                    if unknowns and len(unknowns) == len(equations):
                        # got a square system, let's solve
                        assignees = [unk.name for unk in unknowns]

                        from pymbolic import substitute
                        subst_dict = {
                            rhs_var.name: rhs_var_to_unknown[rhs_var]
                            for rhs_var in unknowns
                        }

                        cb.assign_implicit(
                            assignees=assignees,
                            solve_components=[
                                rhs_var_to_unknown[unk].name
                                for unk in unknowns
                            ],
                            expressions=[
                                substitute(eq, subst_dict) for eq in equations
                            ],

                            # TODO: Could supply a starting guess
                            other_params={"guess": state},
                            solver_id="solve")

                        del equations[:]
                        knowns.update(unknowns)
                        unknowns.clear()

                    # }}}

            # Compute solution estimates.
            estimate_vars = [
                cb.fresh_var("est_" + name)
                for name in estimate_coeff_set_names
            ]

            for iest, name in enumerate(estimate_coeff_set_names):
                out_coeffs = estimate_coeff_sets[name]

                if (last_state_est_var_valid and  # noqa: W504
                        _is_last_stage_same_as_output(self.c, stage_coeff_sets,
                                                      out_coeffs)):
                    state_est = last_state_est_var

                else:
                    state_increment = 0
                    for src_name in stage_coeff_set_names:
                        state_increment += sum(
                            coeff * stage_rhs_vars[src_name][src_istage]
                            for src_istage, coeff in enumerate(out_coeffs))

                    state_est = state + dt * state_increment

                    if self.state_filter is not None:
                        state_est = self.state_filter(state_est)

                cb(estimate_vars[iest], state_est)

            # This updates <t>.
            self.finish(cb, estimate_coeff_set_names, estimate_vars)

            # These updates have to happen *after* finish because before we
            # don't yet know whether finish will accept the new state.
            for name in stage_coeff_set_names:
                if (name in self.recycle_last_stage_coeff_set_names
                        and _is_first_stage_same_as_last_stage(
                            self.c, stage_coeff_sets[name])):
                    cb(last_rhss[name], stage_rhs_vars[name][-1])

        cb_primary = cb

        # }}}

        return DAGCode(phases={
            "initial":
            cb_init.as_execution_phase(next_phase="primary"),
            "primary":
            cb_primary.as_execution_phase(next_phase="primary")
        },
                       initial_phase="initial")
Esempio n. 12
0
    def generate(self):
        """
        :returns: :class:`dagrt.language.DAGCode`
        """
        from pytools import UniqueNameGenerator
        name_gen = UniqueNameGenerator()

        from dagrt.language import DAGCode, CodeBuilder

        array = var("<builtin>array")
        rhs_var = var("rhs_var")

        # Initialization
        with CodeBuilder(name="initialization") as cb_init:
            cb_init(self.step, 1)

        # Primary
        with CodeBuilder(name="primary") as cb_primary:

            if not self.static_dt:
                time_history_data = self.time_history + [self.t]
                time_hist_var = var(name_gen("time_history"))
                cb_primary(time_hist_var, array(self.hist_length))
                for i in range(self.hist_length):
                    cb_primary(time_hist_var[i], time_history_data[i] - self.t)

                time_hist = time_hist_var
                t_end = self.dt
                dt_factor = 1

            else:
                time_hist = list(range(-self.hist_length+1, 0+1))  # noqa pylint:disable=invalid-unary-operand-type
                dt_factor = self.dt
                t_end = 1

            cb_primary(rhs_var, self.eval_rhs(self.t, self.state))
            history = self.history + [rhs_var]

            ab_sum = emit_ab_integration(
                            cb_primary, name_gen,
                            self.function_family,
                            time_hist, history,
                            0, t_end)

            state_est = self.state + dt_factor * ab_sum
            if self.state_filter is not None:
                state_est = self.state_filter(state_est)
            cb_primary(self.state, state_est)

            # Rotate history and time history.
            for i in range(self.hist_length - 1):
                cb_primary(self.history[i], history[i + 1])

                if not self.static_dt:
                    cb_primary(self.time_history[i], time_history_data[i + 1])

            cb_primary(self.t, self.t + self.dt)
            cb_primary.yield_state(expression=self.state,
                                   component_id=self.component_id,
                                   time_id='', time=self.t)

        if self.hist_length == 1:
            # The first order method requires no bootstrapping.
            return DAGCode(
                phases={
                    "initial": cb_init.as_execution_phase(next_phase="primary"),
                    "primary": cb_primary.as_execution_phase(next_phase="primary")
                    },
                initial_phase="initial")

        # Bootstrap
        with CodeBuilder(name="bootstrap") as cb_bootstrap:
            self.rk_bootstrap(cb_bootstrap)
            cb_bootstrap(self.t, self.t + self.dt)
            cb_bootstrap.yield_state(expression=self.state,
                                     component_id=self.component_id,
                                     time_id='', time=self.t)
            cb_bootstrap(self.step, self.step + 1)
            with cb_bootstrap.if_(self.step, "==", self.hist_length):
                cb_bootstrap.switch_phase("primary")

        return DAGCode(
                phases={
                    "initialization": cb_init.as_execution_phase("bootstrap"),
                    "bootstrap": cb_bootstrap.as_execution_phase("bootstrap"),
                    "primary": cb_primary.as_execution_phase("primary"),
                    },
                initial_phase="initialization")
Esempio n. 13
0
def strang_splitting(dag1, dag2, stepping_phase):
    """Given two time advancement routines (in *dag1* and *dag2*), returns a
    single second-order accurate time advancement routine representing the sum
    of both of those advancements.

    :arg dag1: a :class:`dagrt.language.DAGCode`
    :arg dag2: a :class:`dagrt.language.DAGCode`
    :arg stepping_phase: the name of the phase in *dag1* and *dag2* that carries
        out time stepping to which Strang splitting is to be applied.
    :returns: a :class:`dagrt.language.DAGCode`
    """

    from pymbolic.mapper.substitutor import make_subst_func, SubstitutionMapper

    # {{{ disambiguate

    id1 = dag1.existing_var_names()
    id2 = dag1.existing_var_names()

    from pytools import UniqueNameGenerator
    vng = UniqueNameGenerator(id1 | id2)

    from pymbolic import var
    subst2 = {}
    for clash in id1 & id2:
        if not clash.startswith("<") or clash.startswith("<p>"):
            unclash = vng(clash)
            subst2[clash] = var(unclash)

    subst2_mapper = SubstitutionMapper(make_subst_func(subst2))

    # }}}

    all_phases = frozenset(dag1.phases) | frozenset(dag2.phases)
    from dagrt.language import DAGCode, ExecutionPhase
    new_phases = {}
    for phase_name in all_phases:
        phase1 = dag1.phases.get(phase_name)
        phase2 = dag2.phases.get(phase_name)

        substed_s2_stmts = [
            stmt.map_expressions(subst2_mapper) for stmt in phase2.statements
        ]

        if phase_name == stepping_phase:
            assert phase1 is not None
            assert phase2 is not None

            from pymbolic import var
            dt_half = SubstitutionMapper(
                make_subst_func({"<dt>": var("<dt>") / 2}))

            phase1_half_dt = [
                stmt.map_expressions(dt_half) for stmt in phase1.statements
            ]

            if phase1.next_phase != phase2.next_phase:
                raise ValueError(
                    "DAGs don't agree on default "
                    f"phase transition out of phase '{phase_name}'")

            s2_name = phase_name + "_s2"
            s3_name = phase_name + "_s3"

            assert s2_name not in all_phases
            assert s3_name not in all_phases
            """
            du/dt = A + B
            Time interval is [0,1]
            1. Starting with u0, solve du / dt = A from t = 0 to 1/2, get u1
            2. Starting with u1, solve du / dt = B from t = 0 to 1, get u2
            3. Starting with u2, solve du / dt = A from t = 1/2 to 1, get u3
            4. Return u3
            """
            new_phases[phase_name] = ExecutionPhase(
                name=phase_name,
                next_phase=s2_name,
                statements=(_update_t_by_dt_factor(
                    0, _elide_yield_state(phase1_half_dt))))
            new_phases[s2_name] = ExecutionPhase(
                name=s2_name,
                next_phase=s3_name,
                statements=(_update_t_by_dt_factor(
                    1 / 2, _elide_yield_state(substed_s2_stmts))))
            new_phases[s3_name] = ExecutionPhase(name=s3_name,
                                                 next_phase=phase1.next_phase,
                                                 statements=phase1_half_dt)
        else:
            from dagrt.transform import fuse_two_phases
            new_phases[phase_name] = fuse_two_phases(
                phase_name, phase1, phase2.copy(statements=substed_s2_stmts))

    if dag1.initial_phase != dag2.initial_phase:
        raise ValueError("DAGs don't agree on initial phase")

    return DAGCode(new_phases, dag1.initial_phase)