Esempio n. 1
0
def scope_dbt_cli_config_disable_assets():
    # start_marker_dbt_cli_config_disable_assets
    config = {"yield_materializations": False}

    from dagster_dbt import dbt_cli_run

    custom_solid = dbt_cli_run.configured(config, name="custom_solid")
Esempio n. 2
0
def scope_dbt_cli_config_exclude_models():
    # start_marker_dbt_cli_config_exclude_models
    config = {"exclude": ["my_dbt_model+", "path.to.models", "tag:nightly"]}

    from dagster_dbt import dbt_cli_run

    custom_solid = dbt_cli_run.configured(config, name="custom_solid")
Esempio n. 3
0
def scope_dbt_cli_config_vars():
    # start_marker_dbt_cli_config_vars
    config = {"vars": {"key": "value"}}

    from dagster_dbt import dbt_cli_run

    custom_solid = dbt_cli_run.configured(config, name="custom_solid")
Esempio n. 4
0
def scope_dbt_cli_config_executable():
    # start_marker_dbt_cli_config_executable
    config = {"dbt_executable": "path/to/dbt/executable"}

    from dagster_dbt import dbt_cli_run

    custom_solid = dbt_cli_run.configured(config, name="custom_solid")
Esempio n. 5
0
def scope_dbt_cli_config_profile_and_target():
    PROFILE_NAME, TARGET_NAME = "", ""

    # start_marker_dbt_cli_config_profile_and_target
    config = {"profile": PROFILE_NAME, "target": TARGET_NAME}

    from dagster_dbt import dbt_cli_run

    custom_solid = dbt_cli_run.configured(config, name="custom_solid")
Esempio n. 6
0
def scope_dbt_cli_run():
    # start_marker_dbt_cli_run
    from dagster import pipeline
    from dagster_dbt import dbt_cli_run

    config = {"project-dir": "path/to/dbt/project"}
    run_all_models = dbt_cli_run.configured(config, name="run_dbt_project")

    @pipeline
    def my_dbt_pipeline():
        run_all_models()
Esempio n. 7
0
def scope_dbt_cli_run_specific_models():
    # start_marker_dbt_cli_run_specific_models
    from dagster import pipeline
    from dagster_dbt import dbt_cli_run

    config = {"project-dir": "path/to/dbt/project", "models": ["tag:staging"]}
    run_staging_models = dbt_cli_run.configured(config,
                                                name="run_staging_models")

    @pipeline
    def my_dbt_pipeline():
        run_staging_models()
def my_gcp_dataops_pipeline():

    sql_process = bq_solid_for_queries([
        cfg.sql_query["QUERY"]
    ]).alias("export_bq_table_gcs")(dbt_cli_run.configured(
        {"project-dir": cfg.dbt_config["DBT_PROJECT_DIR"]},
        name="run_bq_dbt")())
    spark_process = delete_dataproc_cluster(
        data_proc_spark_operator(create_dataproc_cluster(sql_process)))
    jupyter_process = dm.define_dagstermill_solid(
        "view_data_matplot",
        script_relative_path("jupyter/view_data.ipynb"),
        input_defs=[InputDefinition("start",
                                    Nothing)])(download_file(spark_process))
Esempio n. 9
0
        conn.execute("drop table if exists cereals cascade")
        cereals_df.to_sql(name="cereals", con=conn)


@solid(config_schema={"channels": Array(str)},
       required_resource_keys={"slack"})
def post_plot_to_slack(context, plot_path):
    context.resources.slack.files_upload(channels=",".join(
        context.solid_config["channels"]),
                                         file=plot_path)


run_cereals_models = dbt_cli_run.configured(
    name="run_cereals_models",
    config_or_config_fn={
        "project-dir": PROJECT_DIR,
        "profiles-dir": PROFILES_DIR
    },
)

test_cereals_models = dbt_cli_test.configured(
    name="test_cereals_models",
    config_or_config_fn={
        "project-dir": PROJECT_DIR,
        "profiles-dir": PROFILES_DIR
    },
)

analyze_cereals = define_dagstermill_solid(
    "analyze_cereals",
    file_relative_path(__file__, "notebooks/Analyze Cereals.ipynb"),
Esempio n. 10
0
    with context.resources.db.connect() as conn:
        conn.execute("drop table if exists cereals cascade")
        cereals_df.to_sql(name="cereals", con=conn)


@solid(config_schema={"channels": Array(str)},
       required_resource_keys={"slack"})
def post_plot_to_slack(context, plot_path):
    context.resources.slack.files_upload(channels=",".join(
        context.solid_config["channels"]),
                                         file=plot_path)


# start_solid_marker_0
run_cereals_models = dbt_cli_run.configured(
    config_or_config_fn={"project-dir": PROJECT_DIR},
    name="run_cereals_models",
)
# end_solid_marker_0

test_cereals_models = dbt_cli_test.configured(
    config_or_config_fn={"project-dir": PROJECT_DIR},
    name="test_cereals_models",
)

analyze_cereals = define_dagstermill_solid(
    "analyze_cereals",
    file_relative_path(__file__, "notebooks/Analyze Cereals.ipynb"),
    input_defs=[InputDefinition("run_results", dagster_type=DbtCliOutput)],
    output_defs=[OutputDefinition(str)],
    required_resource_keys={"db"},
)