Esempio n. 1
0
    data_sampler = None

dl = DataLoader(ds, BATCH_SIZE, shuffle=not data_sampler, sampler=data_sampler)

vae_params = dict(image_size=IMAGE_SIZE,
                  num_layers=NUM_LAYERS,
                  num_tokens=NUM_TOKENS,
                  codebook_dim=EMB_DIM,
                  hidden_dim=HID_DIM,
                  num_resnet_blocks=NUM_RESNET_BLOCKS)

vae = DiscreteVAE(**vae_params,
                  smooth_l1_loss=SMOOTH_L1_LOSS,
                  kl_div_loss_weight=KL_LOSS_WEIGHT)
if not using_deepspeed:
    vae = vae.cuda()

assert len(ds) > 0, 'folder does not contain any images'
if distr_backend.is_root_worker():
    print(f'{len(ds)} images found for training')


def save_model(path):
    if not distr_backend.is_root_worker():
        return

    save_obj = {'hparams': vae_params, 'weights': vae.state_dict()}

    torch.save(save_obj, path)

Esempio n. 2
0
from torch.utils.data import DataLoader
from dalle_pytorch import DiscreteVAE

imgSize = 256
load_epoch = 280

vae = DiscreteVAE(image_size=imgSize,
                  num_layers=3,
                  channels=3,
                  num_tokens=2048,
                  codebook_dim=1024,
                  hidden_dim=128)

vae_dict = torch.load("./models/dvae-" + str(load_epoch) + ".pth")
vae.load_state_dict(vae_dict)
vae.cuda()

batchSize = 12
n_epochs = 500
log_interval = 20
#images = torch.randn(4, 3, 256, 256)

t = transforms.Compose([
    transforms.Resize(imgSize),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5),
                         (0.5, 0.5, 0.5))  #(0.267, 0.233, 0.234))
])

train_set = datasets.ImageFolder('./imagedata',
Esempio n. 3
0
    # optimizer

    get_codes = vae.get_codebook_indices
    get_hard_recons = vae.decode
    
    opt = Adam(vae.parameters(), lr = LEARNING_RATE)
    sched = ExponentialLR(optimizer = opt, gamma = LR_DECAY_RATE)
    
    logger.debug(f"args.local_rank : {args.local_rank}")
    if args.local_rank is not None:
        torch.cuda.set_device(args.local_rank)
    else:
        torch.cuda.set_device(0)
    
    if args.multigpus_distributed:
        vae.cuda(args.local_rank)
        
        if args.model_parallel:
            vae = smp.DistributedModel(vae)
            args.scaler = smp.amp.GradScaler()
            opt = smp.DistributedOptimizer(opt)
            if args.partial_checkpoint:
                args.checkpoint = smp.load(args.partial_checkpoint, partial=True)
                vae.load_state_dict(args.checkpoint["model_state_dict"])
                opt.load_state_dict(args.checkpoint["optimizer_state_dict"])
            elif args.full_checkpoint:
                args.checkpoint = smp.load(args.full_checkpoint, partial=False)
                vae.load_state_dict(args.checkpoint["model_state_dict"])
                opt.load_state_dict(args.checkpoint["optimizer_state_dict"])
        else: