Esempio n. 1
0
    # Pass the model to GPU
    if use_cuda:
        # model = model.cuda()
        model = torch.nn.DataParallel(
            model, device_ids=[0]).cuda()  # Multiple GPU parallelism

    # Get the optimizer
    params_dict = dict(model.named_parameters())
    params = []
    for key, value in params_dict.items():
        if key.find('.bn') >= 0 or key.find('.bias') >= 0:
            params += [{'params': [value], 'weight_decay': 0.0}]
        else:
            params += [{'params': [value], 'weight_decay': decay * batch_size}]
    optimizer = optim.SGD(model.parameters(),
                          lr=learning_rate / batch_size,
                          momentum=momentum,
                          dampening=0,
                          weight_decay=decay * batch_size)
    # optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam optimization

    evaluate = False
    if evaluate:
        logging('evaluating ...')
        test(0, 0)
    else:
        for epoch in range(init_epoch, max_epochs):
            # TRAIN
            niter = train(epoch)
            # TEST and SAVE
Esempio n. 2
0
    # Specify the number of workers
    kwargs = {
        'num_workers': num_workers,
        'pin_memory': True
    } if use_cuda else {}

    # Pass the model to GPU
    params_dict = dict(model.named_parameters())
    params = []
    #init_epoch        = model.seen//nsamples
    for key, value in params_dict.items():
        if key.find('.bn') >= 0 or key.find('.bias') >= 0:
            params += [{'params': [value], 'weight_decay': 0.0}]
        else:
            params += [{'params': [value], 'weight_decay': decay * batch_size}]
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    # optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam optimization
    if use_cuda:
        #model = model.cuda()  # Multiple GPU parallelism
        model = torch.nn.DataParallel(model).cuda()  # Multiple GPU parallelism

    # Get the optimizer
    for epoch in range(init_epoch, max_epochs):
        # TRAIN
        niter, loss = train(epoch)
        model.module.save_weights('%s/init.weights' % (checkpoint))
        if loss < 0.1:
            break
        log_file.flush()
    log_file.close()