def parse_contents(contents, filename, date): return html.Div([ html.H5(filename), html.H6(datetime.datetime.fromtimestamp(date)), html.Hr(), DashCanvas(id='annot-canvas', lineWidth=5, image_content = contents, width=500, ), ])
'font-family': title_font, 'font-size': 70})]) )]), dbc.Row([ dbc.Col(html.Div([html.H1('Here, you have the chance to take revenge on your favorite villains', style={'text-align': 'center','color':"#FFFFFF", "margin": "50px", 'font-family': title_font, 'font-size': 55}), ]) )]), dbc.Row([ dbc.Col([html.Div([ DashCanvas( id='canvas-color', width=canvas_width, filename=filename, hide_buttons=['line', 'zoom', 'pan'], ) ], style={'align-items': 'center'}), html.H2('Joana Rafael', style={"margin": "20px", 'color': "#FFFFFF", 'font-family': title_font, 'font-size': 40}), html.H2('[20200588]', style={"margin": "20px", 'color': "#FFFFFF", 'font-family': def_font,'font-size': 17}), ], width={'size': 2, 'offset': 0, 'order': 1}, style={"margin": "20px"}), dbc.Col([html.Div([ DashCanvas( id='canvas-color1', width=canvas_width, filename=filename1, hide_buttons=['line', 'zoom', 'pan'],
html.Div( [ html.P( "Write inside the canvas with your stylus and press Sign", className="section_title", ), html.Div( DashCanvas( id="canvas", lineWidth=8, width=canvas_width, height=canvas_height, hide_buttons=[ "zoom", "pan", "line", "pencil", "rectangle", "select", ], add_only=False, lineColor="black", goButtonTitle="Sign", ), className="canvas-outer", style={"margin-top": "1em"}, ), ], className="v-card-content", ), html.Div(
def getInpaintLayout(image_content, image_filename, CANVAS_WIDTH, CANVAS_HEIGHT): canvas_layout = html.Div( [ html.Div( [ html.H3('Image to be filled'), html.Hr(style={'width': '80%'}), html.Div( DashCanvas( id='annot-canvas', lineWidth=10, width=CANVAS_WIDTH, height=CANVAS_HEIGHT, lineColor='rgba(255, 0, 0, 0.6)', #image_content=image_content, filename=image_filename, tool="rectangle", hide_buttons=['line', 'pan', 'select'], goButtonTitle="Fill Mask", ), className='col-md-10'), dcc.Checklist(id='fill-rect', options=[ { 'label': 'Fill Rectangles', 'value': 'fill' }, ], value=['fill']), dcc.Checklist(id='use-data-term', options=[ { 'label': 'Use Data Term', 'value': 'use' }, ], value=['use']), dcc.Checklist(id='use-center-threshold', options=[ { 'label': 'Use Center Similarity Threshold', 'value': 'use' }, ], value=[]), dcc.Checklist(id='live-preview', options=[ { 'label': 'Live Preview', 'value': 'show' }, ], value=[]), html.Div([ html.Div(id='inpaint-alert-div'), dcc.Upload( id='upload-mask', children=html.Div(['Or ', html.A('Upload a Mask')]), style={ 'width': '80%', 'height': '60px', 'lineHeight': '60px', 'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px', 'textAlign': 'center', 'margin': '10px', 'position': 'center' }, accept='.png, .jpg, .jpeg', # don't allow multiple files to be uploaded multiple=False, className='upload-section') ]) ], className='col-xl-6 canvas-section', id='canvas_div'), html.Div(className='col-xl-6', id='result-div', style={'marginBottom': '20px'}), ], className='row') sliders_layout = html.Div( [ html.Div([ html.H5(children=['Brush width']), dcc.Slider( id='brush-width-slider', min=2, max=60, step=1, value=10), ], className="col-lg-2 sliders", style={'text-align': 'center'}), html.Div([ html.H5(children=['Patch Size']), dcc.Slider(id='patch-size-slider', min=3, max=13, step=2, value=9, marks={ 3: '3', 5: '5', 7: '7', 9: '9', 11: '11', 13: '13' }, included=False), ], className="col-lg-3 sliders", style={'text-align': 'center'}), html.Div([ html.H5(children=[ 'Local Radius : ', html.Span('100px', id='local-radius-output') ]), dcc.Slider(id='local-radius-slider', min=50, max=500, step=5, value=100, included=False) ], className="col-lg-3 sliders"), html.Div([ html.H5(children=[ 'Data Term significance : ', html.Span('1', id='data-term-output') ]), dcc.Slider(id='data-term-slider', min=0, max=1, step=0.1, value=1, marks={ 0: '0', 1: '1' }), ], className="col-lg-2 sliders", style={'text-align': 'center'}), html.Div([ html.H5(children=[ 'Center Similarity Threshold : ', html.Span('0.7', id='center-similarity-output') ]), dcc.Slider(id='center-similarity-slider', min=0.1, max=1.8, step=0.01, value=0.7, marks={ 0.1: '0.1', 1.8: '1.8' }), ], className="col-lg-2 sliders", style={'text-align': 'center'}) ], className="row", style={ 'text-align': 'center', 'width': '100%', 'marginTop': '20px', 'marginBottom': '20px' }) inpaint_layout = html.Div([ html.H1('Draw Mask and Then Run The Inpainter', style={ 'text-align': 'center', 'margin': '40px 0px' }), sliders_layout, canvas_layout ], className='col') return inpaint_layout
import dash from dash_canvas import DashCanvas app = dash.Dash(__name__) app.layout = DashCanvas() if __name__ == "__main__": app.run_server(debug=True)
superpixel_color_segmentation, ) from skimage import color, io image_path = "img/bird2.png" default_image = io.imread(image_path) image_string = array_to_data_url(default_image) app = dash.Dash(__name__) app.layout = html.Div([ html.Div( [ DashCanvas( id="first-image", filename=image_string, width=500, lineWidth=5, lineColor="lime", goButtonTitle="remove", ) ], style={ "float": "left", "width": "40%" }, ), html.Div( [html.Img(id="remove-background")], style={ "float": "left", "width": "40%" },
fig_scatter = px.scatter(data_frame=df, x='Year', y='Rate (per 100,000 females)', color='Race') app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) app.layout = dbc.Container([ html.H1("Late-Stage Female Breast Cancer", style={'textAlign': 'center'}), dbc.Row([ dbc.Col([ dcc.Graph(figure=fig_scatter, config={"modeBarButtonsToAdd": btns}) ], width=8), dbc.Col([ html.H2('Take Notes:'), DashCanvas( id='my-canvas', tool='pencil', lineWidth=3, lineColor=None) ], width=4, className='mt-5') ]), dbc.Row([ dbc.Col( [dcc.Graph(figure=fig_img, config={"modeBarButtonsToAdd": btns})], width=6), dbc.Col([ daq.ColorPicker(id='color-picker', label='Brush color', value=dict(hex='#119DFF')) ], width=4, className='mt-5')
def image_edit_tab(app): return html.Div([ content_header('Image Editing', 'Draw on images'), html.P('Users can edit images directly by drawing on them, or just draw on a blank canvas!'), html.Br(), html.P('Step 1: Upload an image (optional)'), html.P('Step 2: Start drawing!'), html.Div([ # Left item html.Div([ html.Div([ dcc.Upload([ html.Img(src=app.get_asset_url('upload.svg')), html.Span('Drag and drop image here, or click to upload') ], id='upload-image', multiple=False ), ], id='div-image-input', className='div-with-image small-image' ), html.Br(), html.Div([ DashCanvas( id='image-canvas', width=600, height=400, goButtonTitle='Save', hide_buttons=['zoom', 'line', 'rectangle', 'select'], ), html.Button( 'clear', id='button-canvas-clear', style={ 'float': 'right', 'transform': 'translateY(-58px)' } ) ], id='div-image-output' ) ], className='custom-dark-div custom-div-left custom-div-space-above custom-div-large-full' ), # Right item html.Div([ html.P('Brush width'), daq.Knob( id='knob-canvas', min=2, max=40, value=5 ), html.Button( html.P('-', style={'font-size': '2em'}), id='button-image-minus', style={ 'display': 'inline-block', 'margin': 0, 'margin-right': '10px', 'transform': 'translateY(-50px)', } ), html.Button( html.P('+', style={'font-size': '2em'}), id='button-image-plus', style={ 'display': 'inline-block', 'margin': 0, 'transform': 'translateY(-50px)', } ), html.P('Brush colour'), daq.ColorPicker( id='image-color-picker', label=' ', value=dict(hex='#119DFF'), style={ 'border': 'none', 'overflow': 'hidden' } ) ], className='custom-div-center custom-div-space-above custom-div-smaller' ), # Bottom item html.Div( id='image-result' ) ], className='custom-container' ) ])
outdir = './assets/' test_list = [ f for f in os.listdir(inputdir)] if(True): for f in test_list: ds = pydicom.read_file(inputdir + f, force=True) # read dicom image img = ds.pixel_array # get image array cv2.imwrite(outdir + f + ".png" ,img) # write png image #imageio.imwrite(outdir + f.replace('.dcm','.jp2'), img) app = dash.Dash(__name__) filename = " http://127.0.0.1:8050/"+'ID_0060_AGE_0080_CONTRAST_0_CT.dcm.png' filename_s = 'ID_0060_AGE_0080_CONTRAST_0_CT.dcm.png' canvas_width = 500 app.layout = html.Div([ #html.Img(src=app.get_asset_url(filename_s)), DashCanvas(id='canvas_image', tool='line', lineWidth=5, lineColor='red', filename=app.get_asset_url(filename_s), width=canvas_width) ]) if __name__ == '__main__': app.run_server(debug=True)
def app_layout(): """Returns layout for the front-end of the app""" return html.Div([ html.Div( children=[ # Title html.H1( children=""" SAEMI: Size Analysis of Electron Microscopy Images """, style={'textAlign': 'center'} ), # Instructions html.Div( children=[ html.Button( 'Instructions', id='instruction_button' ), html.P( id='instruction_paragraph', style={'margin-left': 150, 'margin-right': 150} ) ], style={'textAlign': 'center'} ), # Upload demo or file html.Div( children=[ html.Div( html.Button( id='demo', children='Try the Demo' ), style={'display': 'inline-block'} ), html.Div( dcc.Upload( id='upload-image', children=html.Button('Upload Image'), ), style={'display': 'inline-block'} ) ], style={'display': 'flex', 'justify-content': 'center'} ), # Display image and filename after uploading html.H1( id='file_name', style={ 'marginTop': 25, 'textAlign': 'center', 'fontSize': 12 } ), html.Img( id='raw_image', style={ 'height': 192, 'width': 256, 'display': 'block', 'margin-right': 'auto', 'margin-left': 'auto' } ), # Loading progress dcc.Loading( children=[ html.Div(id='pred_json', style={'display': 'none'}), html.Div( id='pred_json_copy', style={'display': 'none'} ), html.Div(id='images_data', style={'display': 'none'}), html.Div( id='size_distr_json', style={'display': 'none'} ) ], type='default' ), html.Hr(), ], className='one row' ), html.Div( children=[ html.Div( children=[ html.H2( 'Enter Bin Size', style={'fontSize': 16} ), dcc.Input( id='binsize', value=25, type='number', debounce=True, min=1 ) ], style={'display': 'inline-block'} ), # Histogram dcc.Graph( id='size_distr_graph' ), html.A( 'Download Data', id='download-link', href='', target='_blank', style={'display': 'inline-block'} ), html.Hr() ], className='one row', style={'textAlign': 'center'} ), html.Div( children=[ # Images html.Div([ # Uniquely Labeled Prediction Image html.Div( children=[ html.H2(children='Process Image'), html.Pre( children=open_txt_doc('postprocessing.txt'), style={'margin-bottom': '32px'} ), html.Div( children=[ DashCanvas( id='postprocessing', width=768, height=576, hide_buttons=[ 'zoom', 'pan', 'line', 'pencil', 'rectangle', 'select' ] ), dcc.RadioItems( id='showitem', options=[ {'label': 'B/W', 'value': 'bw'}, { 'label': 'Colour', 'value': 'colour' } ], value='bw', labelStyle={'display': 'inline-block'} ), dcc.Slider( id='brushwidth', min=2, max=40, step=1, value=5, tooltip={ 'always_visible': False, 'placement': 'bottom' } ), dcc.Dropdown( id='colourpicker', options=[ { 'label': 'Draw (white)', 'value': 'draw' }, { 'label': 'Remove (red)', 'value': 'remove' }, { 'label': 'Erase (black)', 'value': 'erase' } ], value='draw', style={ 'width': '300px', 'margin': 'auto' } ) ], style={'display': 'inline-block'} ), ], style={'textAlign': 'center'}, className='six columns' ), # Original Image and Overlay html.Div( children=[ html.H2( children='Overlay of Original with Segments' ), html.Pre( children=open_txt_doc('resize_warning.txt'), style={'margin-bottom': '32px'} ), html.Div( children=[ html.Img( id='ximage', style={ 'top': 32, 'width': 768, 'height': 566 } ), html.Img( id='yimage' ) ], style={'position': 'relative'} ), dcc.Slider( id='opacity_value', min=0, max=1, step=0.1, value=0.5, ), ], style={'textAlign': 'center'}, className='six columns' ), ]), html.Hr() ], className='one row' ), html.Div( children=[ # Feedback html.Div( children=[ html.H2('Your Feedback is Welcome!'), html.P( """ For any questions, concerns, or suggestions, please email me at: """ ), html.B('*****@*****.**'), html.P( 'Check out the user docs for more information:' ), html.A( ( "https://github.com/lwang94" "/sem_size_analysis/blob/master" "/docs/user_docs.md" ), href=( "https://github.com/lwang94" "/sem_size_analysis/blob/master" "/docs/user_docs.md" ) ) ], style={'textAlign': 'center'} ) ], className='one row' ) ])
from pprint import pprint app = dash.Dash(__name__) canvas_width = 1000 canvas_height = 1000 columns = ['type', 'width', 'height', 'scaleX', 'strokeWidth', 'path'] app.layout = html.Div([ html.H6('Draw on image and press Save to show annotations geometry'), html.Div([ DashCanvas(id='annot-canvas', lineWidth=5, width=canvas_width, height=canvas_height, hide_buttons=[ "zoom", "pan", "line", "pencil", "rectangle", "undo", "select" ]) ], style={"width": "100%"}), DataTable(id='annot-canvas-table', style_cell={'textAlign': 'left'}, columns=[{ "name": i, "id": i } for i in columns]), html.Div([ html.Img(id='my-image', width=canvas_width, height=canvas_height), ]), # html.P()
import dash from dash_canvas import DashCanvas from dash_canvas.utils import array_to_data_url from skimage import io # ➊ 画像を変数に渡す data = array_to_data_url(io.imread("img/bird1.png")) app = dash.Dash(__name__) app.layout = DashCanvas( id="first-image", image_content=data, # ➋ コンポーネントへの画像の読み込み width=800, # ➌ キャンバスの横幅 lineWidth=12, # ➌書き込みの線の太さ goButtonTitle="nothing", # ➌ saveボタンのタイトル変更 lineColor="lime", # ➍ 書き込み線の色 hide_buttons=["zoom", "pan", "line", "select"], # ➍ 編集ツールの設定 ) if __name__ == "__main__": app.run_server(debug=True)
times = [] columns = ['type', 'width', 'height', 'scaleX', 'strokeWidth', 'path', 'time'] app.layout = html.Div(style={'backgroundColor': colors['background'], 'text-align': 'center'}, children=[ html.Div(id='canvas_div', children=[ html.H1('Observa atentamente la figura'), html.P("Cuando la imagen desaparezca, copiala lo mejor posible dibujando sobre la pantalla"), DashCanvas( id='canvas', lineColor='#00243C', width=canvas_width, lineWidth=5, height=canvas_height, image_content=array_to_data_url(img), #scale=1, hide_buttons=['line', 'zoom', 'pan', 'rectangle', 'pencil', 'select', 'redo', 'undo'], goButtonTitle='Finalizar'), html.A(html.Button('Descargar datos', id='download-button'), id='download-a', download='download.csv', #href="", n_clicks=0, #target='_blank' ) ], style={'text-align':"center", 'border': '2px solid black'}), html.Div(id='table_div',
appname = "Pathfinding" filename = "https://raw.githubusercontent.com/hyperion0/multi-page-app/master/assets/pathfinding.png" img = io.imread(filename, as_gray=True) height, width = img.shape img_str = io.imread(filename) logging.info(f"img shape {img.shape}") layout = html.Div( [ Header(app), html.H3(appname), DashCanvas( id="canvas", filename=filename, hide_buttons=["line", "zoom", "pan"], goButtonTitle="Find Path", ), dcc.Markdown(img.shape, id="log"), dcc.Graph(id="pathgraph", figure={"data": [go.Heatmap()]}), ] ) @app.callback( [Output("pathgraph", "figure"), Output("canvas", "image_content")], [Input("canvas", "json_data")], ) def update_data(string): if string: mask = parse_jsonstring(string, img.shape)
import base64 from io import BytesIO from css import * import datetime as dt import io, re import numpy as np app = dash.Dash(__name__, server=server, routes_pathname_prefix='/images/') app.layout = html.Div([ html.Div(id='output-data-upload', style={'display': 'none'}), html.Div([ DashCanvas(id='canvas_image', tool='line', lineWidth=5, lineColor='red', width=500, height=500, goButtonTitle='Classify me!'), html.Button('Classify the image!', id='classify-button'), dcc.Loading(html.Div(id='classification')), dcc.Loading(html.Div(id='classification-2')) ]), dcc.Upload(id='upload', children=html.Div(['Drag and Drop or ', html.A('Select Files')]), style=upload_style) ]) @app.callback([
dcc.Slider( id='my-slider', min=0, max=len(top_list)-1, step=1, value=int(len(top_list)/2), updatemode='mouseup'), ]), html.Div([ dcc.Graph( id='image-filtered'), dcc.Slider(id='filter-slider', min=1, max=50, step=1, value=5, updatemode='mouseup'), ]) # html.Div(children=list_string, id='stored-data', style={'display':'none'}) ], style={'columnCount':2}), html.Div([ html.Div([ DashCanvas(id='canvas-color')], style={'display':'flex','align-items': 'center', 'justify-content': 'center'}), html.Div([ html.H6(children=['Brush width'])],style={'display':'flex','align-items': 'center', 'justify-content': 'center'}), dcc.Slider( id='bg-width-slider', min=2, max=40, step=1, value=5 ), daq.ColorPicker( id='color-picker', label='Brush color', value=dict(hex='#119DFF')) ]) ])
import dash import dash_html_components as html from dash_canvas import DashCanvas app = dash.Dash(__name__) app.config.suppress_callback_exceptions = True app.layout = html.Div([ html.H5('Press down the left mouse button and draw inside the canvas'), DashCanvas(id='canvas_101') ]) if __name__ == '__main__': app.run_server(debug=True)
watershed_segmentation) from skimage import io, color, img_as_ubyte import numpy as np app = dash.Dash(__name__) filename = 'https://upload.wikimedia.org/wikipedia/commons/e/e4/Mitochondria%2C_mammalian_lung_-_TEM_%282%29.jpg' canvas_width = 300 img = io.imread(filename, as_gray=True) app.layout = html.Div([ html.H6('Annotate the two objects and the background'), html.Div([ DashCanvas( id='segmentation-canvas', lineWidth=5, filename=filename, width=canvas_width, ), ], className="five columns"), html.Div([ html.Img(id='segmentation-img', width=300), ], className="five columns"), ]) @app.callback(Output('segmentation-img', 'src'), [Input('segmentation-canvas', 'json_data')]) def segmentation(string): if string:
pred = max(output.data, 1)[1] return (pred.item()) app = dash.Dash(__name__) server = app.server #TODO: height is 200px, https://github.com/plotly/dash-canvas/issues/37 <- potential commit width = 200 height = 200 app.layout = html.Div([ DashCanvas( id='canvas_1', width=width, hide_buttons=['line', 'zoom', 'pan', 'pencil', 'rectangle', 'select'], lineWidth=20, lineColor='black'), html.P(id='dummy-output') ]) @app.callback(Output('dummy-output', 'children'), [Input('canvas_1', 'json_data')]) def update_data(string): if string: imageArray = parse_jsonstring(string) imageCropped = imageArray[0:width, 0:height] rescaledImageArray = rescale(imageCropped, (0.14, 0.14)) prediction = predict(rescaledImageArray) else:
# pip3 install dash-canvas import dash import dash_html_components as html from dash_canvas import DashCanvas import numpy as np app = dash.Dash(__name__) filename = 'https://upload.wikimedia.org/wikipedia/commons/e/e4/Mitochondria%2C_mammalian_lung_-_TEM_%282%29.jpg' canvas_width = 500 app.layout = html.Div([ DashCanvas(id='canvas_image', tool='rectangle', lineWidth=5, lineColor='red', filename=filename, width=canvas_width) ]) if __name__ == '__main__': app.run_server(debug=True)
'width': '80%', 'height': '700px', 'margin': '0 auto 0', 'padding': '5%' }, elements=elements) ]), ], style={'margin': '5%'}), # Dash Canvas html.Div([ html.Div([html.H3(['Dash Canvas'], style=compTitle)]), html.Div([ html.H3('絵が描けます'), DashCanvas(id='canvas1', height=800), ], style={'margin': '3%'}), html.Div([ html.H3('小ネタだけでなく、scikit-imageと組み合わせたら凄いことに!'), ]), html.Div([ DashCanvas( id='segmentation-canvas', lineWidth=5, filename=filename, width=canvas_width, ), ], className="five columns"), html.Div([
import json import dash import dash_html_components as html from dash.dependencies import Input, Output from dash_canvas import DashCanvas app = dash.Dash(__name__) # ➊ レイアウトを作成する app.layout = html.Div([DashCanvas(id="my_canvas"), html.Div(id="my_callback")]) @app.callback( # ➋ 入力項目にID"my_canvas"のjson_data属性を指定 Output("my_callback", "children"), Input("my_canvas", "json_data"), ) def show_json_data(json_data): if json_data: # ➍ json_data属性にデータが存在する場合、返り値とする return json.dumps(json_data) raise dash.exceptions.PreventUpdate # ➎ データがない場合コールバックを更新しない if __name__ == "__main__": app.run_server(debug=True)
#html.Img(src=app.get_asset_url('2a76a.png'), style={'width': '250px'}), #html.Img(src=app.get_asset_url('exd3k.png'), style={'width': '250px'}), #html.Img(src=app.get_asset_url('ky5fm.png'), style={'width': '250px'}), #html.Img(src=app.get_asset_url('w8bp5.png'), style={'width': '250px'}), #html.Br(), #html.Br(), # Dash canvas for drawing captcha html.Div( [ html.H2('Draw a CAPTCHA and press SAVE to see work'), DashCanvas( id='canvas', lineWidth=12, lineColor='black', hide_buttons=[ "zoom", "pan", "line", "pencil", "rectangle", "select" ], height=200, width=800, ), ], style={ 'display': 'inline-block', 'vertical-align': 'middle', 'border-style': 'ridge', 'border-width': '20px', 'padding': '15px', }), html.Br(), html.Br(),
import dash_html_components as html from dash_canvas import DashCanvas from dash_canvas.utils import array_to_data_url, parse_jsonstring app = dash.Dash(__name__) filename = 'https://raw.githubusercontent.com/plotly/datasets/master/mitochondria.jpg' canvas_width = 300 app.layout = html.Div([ html.H6('Draw on image and press Save to show annotations geometry'), html.Div([ DashCanvas( id='canvas', lineWidth=5, filename=filename, width=canvas_width, ), ], className="five columns"), html.Div([ html.Img(id='my-image', width=300), ], className="five columns"), ]) @app.callback(Output('my-image', 'src'), Input('canvas', 'json_data')) def update_data(string): if string: mask = parse_jsonstring(string, io.imread(filename, as_gray=True).shape)
dash_table.DataTable( id='table2', # Defines, that all columns from df_summary shall be shown columns=[{ "name": i, "id": i } for i in df_summary.columns], data=df_summary.to_dict('records'), # Defines the Style of the Table style_table={'margin': { 'b': 10000 }}), # Includes Image DashCanvas(id='graph', tool='line', lineWidth=5, lineColor='red', image_content='data:image/png;base64,{}'.format(test_base64), width=canvas_width), # Creates the Sub-Headline html.Div(children=[ html.Div("-"), html.Div("-"), html.Div("-"), html.Div("Summary of the components:"), ]), # Creates Table 2 dash_table.DataTable( id='table', # Defines, that all columns of df_components shall be # shown columns=[{