Esempio n. 1
0
def get_layout(UPDATE_INT, config=None):

    app_layout = html.Div([
        html.Div([
            dcc.Interval(id='interval_component',
                         interval=UPDATE_INT * 1000,
                         n_intervals=0),
            dcc.Interval(
                id='psutil_component', interval=2 * 1000, n_intervals=0)
        ],
                 style=dict(textAlign='center')),
        html.Div([
            daq.Gauge(id='virtual_memory',
                      min=0,
                      value=0,
                      size=150,
                      className="leftbox",
                      style=dict(textAlign="center")),
            daq.Gauge(id='swap_memory',
                      min=0,
                      value=0,
                      size=150,
                      className="rightbox",
                      style=dict(textAlign="center")),
        ]),
        daq.LEDDisplay(id='train-id',
                       value=1000,
                       color="#FF5E5E",
                       style=dict(textAlign="center")),
        html.Br(),
        html.Div(children=[
            dcc.Tabs(
                parent_className='custom-tabs',
                className='custom-tabs-container',
                id='view-tabs',
                value='plot',
                children=[
                    dcc.Tab(className="custom-tab",
                            selected_className='custom-tab--selected',
                            label='Stream/Load data',
                            value='stream-data',
                            children=get_stream_tab(config)),

                    # dcc.Tab(
                    #     className="custom-tab",
                    #     selected_className='custom-tab--selected',
                    #     label='Experimental parameters',
                    #     value='exp-param',
                    #     children=get_exp_tab()
                    # ),
                    dcc.Tab(className="custom-tab",
                            selected_className='custom-tab--selected',
                            label='Plots',
                            value='plot',
                            children=get_plot_tab(config))
                ])
        ])
    ])

    return app_layout
Esempio n. 2
0
def get_my_carbon_food_print(country, age_group, *args):
    newDict = {}
    i = 0
    for category in food_categories:
        newDict[category] = {}
        for item in all_keys[category]:
            newDict[category][item] = args[i]
            i += 1
    my_carbon_food_print = helper_data.calculate_my_carbon_food_print(newDict)
    country_food_print = helper_data.get_carbon_food_print_for_country(
        country, age_group)
    return html.Div([
        html.Div([
            daq.Gauge(id='my-gauge',
                      label='Your weekly CO2 food print',
                      max=100000,
                      value=my_carbon_food_print,
                      min=0)
        ],
                 className="six columns"),
        html.Div([
            daq.Gauge(id='country-gauge',
                      label=country + ' ' + age_group.lower() +
                      ' weekly CO2 food print',
                      max=100000,
                      value=country_food_print,
                      min=0)
        ],
                 className="six columns")
    ],
                    className="row")
Esempio n. 3
0
def percentfig(pipe_df, ref_df):
    # Number of Evaluated Algorithms
    #evalgo = len(pipe_df['ALGO_NAME'].unique())
    evalgo = len(pipe_df['ALGO_NAME'][pipe_df['ALGO_NAME'].str.contains(
        '_stack') == False][pipe_df['PP_FLAG'] == 'N'].unique())
    # Hyperparameters
    evalhyper = len(pipe_df['HYPER_NAME'].unique())
    # Total Algo Space
    total_algo = len(ref_df['ALGO_NAME'].unique())
    print(total_algo)
    # Total Hyper Space
    total_hyper = ref_df['TOTAL_HYPER_COUNT'].groupby(
        ref_df['ALGO_NAME']).count().sum()

    pct_algos = (evalgo / total_algo) * 100
    pct_hypers = (evalhyper / total_hyper) * 100

    pfig1 = html.Div([
        daq.Gauge(id='my-gauge',
                  color={
                      "gradient": True,
                      "ranges": {
                          "green": [60, 100],
                          "yellow": [40, 59],
                          "red": [0, 39]
                      }
                  },
                  label="% Algorithms",
                  size=150,
                  value=round(pct_algos, 0),
                  min=0,
                  max=100)
    ])

    pfig2 = html.Div([
        daq.Gauge(id='my-gauge-1',
                  color={
                      "gradient": True,
                      "ranges": {
                          "green": [0, 6],
                          "yellow": [6, 8],
                          "red": [8, 10]
                      }
                  },
                  label="% Hyperparameters",
                  size=150,
                  value=round(pct_hypers, 0),
                  min=0,
                  max=100)
    ])

    return pfig1, pfig2
Esempio n. 4
0
def model_perf(value):
    datasets = json.loads(value)
    df = pd.read_json(datasets['df_model_performance'], orient='split')
    df['Value'] = round(df['Value'], 3)

    return html.Div([
        html.H1('Model Performance'),
        dbc.Row([
            dbc.Col(daq.LEDDisplay(
                label='AUC', color="#FF5E5E", value=str(df['Value'][0])),
                    md=2),
            dbc.Col(daq.LEDDisplay(
                label='GINI', color="#FF5E5E", value=str(df['Value'][1])),
                    md=2),
            dbc.Col(daq.LEDDisplay(label='Kolmogorov-Smirnov',
                                   color="#FF5E5E",
                                   value=str(df['Value'][2])),
                    md=2),
            dbc.Col(daq.Gauge(color={
                "gradient": True,
                "ranges": {
                    "red": [0, 40],
                    "yellow": [40, 70],
                    "green": [70, 100]
                }
            },
                              value=df['Value'][0] * 100,
                              label='Overall Model Quality',
                              max=100,
                              min=0),
                    md=4),
        ],
                align="center"),
    ]),
Esempio n. 5
0
def predict(Platform, Genre):

    row = pd.DataFrame(
        columns=['Platform', 'Genre'],
        data=[[Platform, Genre]]
    )

    y_pred = round(model.predict(row)[0] * 100, 2)

    label = f'Sales prediction chances are likely {y_pred}%'

    output = daq.Gauge(
             id='Prediction-Sales',
             label=label,
             color="3346FF",
             showCurrentValue=True,
             value=y_pred,
             min=0,
             max=200,
             units="%")

    print(f'{label}')


    return output
Esempio n. 6
0
def make_card(name, avg):
    link = '/' + name
    return dbc.Card(
        [
            dbc.CardBody([
                html.Div([
                    html.H4(name, className="card-title"),
                    daq.Gauge(id=name + '_gauge',
                              label="Mood in past week",
                              value=avg,
                              max=10,
                              min=0,
                              showCurrentValue=True,
                              color={
                                  "gradient": True,
                                  "ranges": {
                                      "red": [0, 4],
                                      "yellow": [4, 7],
                                      "green": [7, 10]
                                  }
                              }),
                    dbc.Button("Details", href=link, color="primary"),
                ],
                         className="container text-center")
            ]),
        ],
        style={"width": "18rem"},
    )
Esempio n. 7
0
def progress_gauge(current,total):
   logging.debug("progress gauge: {} of {}".format(current,total))
   try:
      per_cent = round(100*(current/total))
   except ZeroDivisionError:
      per_cent = 0
   # some "total" numbers are estimates, so could go over 100%
   if per_cent > 100:
      per_cent = 100
   elements = [   
                  daq.Gauge(  value          = per_cent,
                              max            = 100,
                              min            = 0,
                              size           = 130,
                              color          = {"gradient"  : True,
                                                "ranges"    : {"red"    : [0,  25],
                                                               "yellow" : [25, 75],
                                                               "green"  : [75, 100],
                                                               },
                                                },
                              label          = {'label' : '%',
                                                'style' : {'font-size': 'larger'}
                                                },
                              labelPosition  = 'bottom',
                              ),
                  ]
   return elements
Esempio n. 8
0
def create_quick_overview_tab(id_gauges, id_graphs, n_clicks, data):
    if n_clicks % 2 == 1:
        button = 'The live graphs are currently being updated.'
        graphs = []
        for id_graph in id_graphs:
            sensor_graph = find_sensor_given_id(id_graph)
            graph = create_graph(sensor_graph, data)
            if sensor_graph:
                graphs.append(graph)

    else:
        button = 'The live graphs are currently paused.'
        graphs = no_update

    gauges = []
    for id_gauge in id_gauges:
        sensor_gauge = find_sensor_given_id(id_gauge)
        if sensor_gauge:
            maxVal = sensor_gauge['max_value']
            minVal = sensor_gauge['min_value']
            gauge_unit = sensor_gauge['units']
            gauge_label = sensor_gauge['label']
            if sensor_gauge['id'] == 'AVG_VSS':
                gauge_value = (data['FL_VSS'][len(data) - 1] + data['FR_VSS'][len(data) - 1] +
                               data['BL_VSS'][len(data) - 1] + data['BR_VSS'][len(data) - 1]) / 4
            else:
                gauge_value = data[sensor_gauge['id']][len(data) - 1]
            gauges.append(daq.Gauge(id=sensor_gauge['id'] + "_qo_gauge", max=maxVal, min=minVal, units=gauge_unit,
                                    label=gauge_label, value=gauge_value, showCurrentValue=True,
                                    style={'display': 'inline-block',
                                           'width': '20%'}))

    return gauges, graphs, button, no_update, no_update, no_update, no_update, no_update, no_update
Esempio n. 9
0
def predict(walk_distance, time_survived, duration, game_mode, platform, ride_distance, map_name, weapons_acquired, boosts):

    # Create row
    row = pd.DataFrame(
        columns=['walkDistance', 'timeSurvived', 'duration', 'gameMode',
                 'platform', 'rideDistance', 'mapName', 'weaponsAcquired', 'boosts'],
        data=[[walk_distance, time_survived, duration, game_mode,
               platform, ride_distance, map_name, weapons_acquired, boosts]]
    )

    y_pred = round(model.predict(row)[0] * 100, 2)

    label = f'Your chances of winning are {y_pred}%'

    output = daq.Gauge(
        id='win-place-pred-gauge',
        label=label,
        color="#F2A900",
        showCurrentValue=True,
        value=y_pred,
        max=100,
        min=0,
        units="%")

    print(f'[DEBUG] {label}')

    return output
Esempio n. 10
0
def make_sentiment_gauge(label, value):
    return daq.Gauge(
        label=label,
        min=0,
        max=1,
        value=value,
        color={"gradient": True, "ranges": {
            "green": [0, 0.6], "yellow": [0.6, 0.8], "red": [0.8, 1]}},
        size=120)
def explore_model_make_gauges(*values):
    if values[-5] == None:
        raise PreventUpdate
    feature_values = json.loads(values[-5])

    data_target = values[-4]
    model_length = json.loads(values[-3])
    model_weights = json.loads(values[-2])
    model_weights = [np.array(i) for i in model_weights]
    N_values = json.loads(values[-1])
    N = NormalizationTensor.from_stored_value(
        np.array(N_values['feature_mean']), np.array(N_values['feature_std']),
        np.array(N_values['target_mean']), np.array(N_values['target_std']))

    model1 = model1_prep(model_length, add_dropout=False)
    model1.set_weights(model_weights)

    prediction = N.n2t(model1.predict(N.f2n(feature_values)))

    df_target = pd.read_json(data_target)
    column_names = list(df_target.columns)
    min_targets = df_target.min(axis=0).values
    max_targets = df_target.max(axis=0).values
    gauges = []
    for i, (name, min_value,
            max_value) in enumerate(zip(column_names, min_targets,
                                        max_targets)):
        gap = (max_value - min_value) / 3
        green = [min_value, min_value + gap]
        yellow = [min_value + gap, min_value + 2 * gap]
        red = [min_value + 2 * gap, min_value + 3 * gap]
        gauge = daq.Gauge(id={
            'type': 'gaugeModelExploration',
            'index': name
        },
                          label=name,
                          min=min_value,
                          max=max_value,
                          value=prediction[0, i],
                          showCurrentValue=True,
                          color={
                              "gradient": True,
                              "ranges": {
                                  "green": green,
                                  "yellow": yellow,
                                  "red": red
                              }
                          },
                          size=100,
                          scale={
                              'start': min_value,
                              'interval': (max_value - min_value) / 8
                          })
        gauges.append(html.Div(gauge, className='col s1'))
    return [html.Div(gauges, className='row')]
Esempio n. 12
0
    def build_quick_stats_panel(self):
        """Quick stats on the left of the view

        :return: html.Div object
        """
        current_giesszellenbedarf = \
            self.dm.giesszellenbedarf_over_time().iloc[0, :]
        return html.Div(
            id="quick-stats",
            className="row",
            children=[
                html.Div(
                    id="card-1",
                    children=[
                        html.P("Operator ID"),
                        daq.LEDDisplay(
                            id="operator-led",
                            value="042",
                            color="#92e0d3",
                            backgroundColor="#1e2130",
                            size=20,
                        ),
                    ],
                ),
                html.Div(
                    id="card-2",
                    children=[
                        html.P("Durchschnittl. Formverschleiß"),
                        daq.GraduatedBar(id="form-life-bar",
                                         value=self.dm.avg_attrition),
                    ],
                ),
                html.Div(
                    id="card-3",
                    children=[
                        html.P(
                            "Prozentuale Gießzellenauslastung diesen Monat"),
                        daq.Gauge(id="attrition-gauge",
                                  min=0,
                                  max=100,
                                  showCurrentValue=True,
                                  value=100 *
                                  current_giesszellenbedarf.mean() /
                                  current_giesszellenbedarf.max())
                    ],
                ),
                html.Div(  # todo: Implement this feature
                    id="card-4",
                    children=daq.BooleanSwitch(id="AI-powerbutton",
                                               on=False,
                                               label='AI',
                                               color="#92e0d3"),
                ),
            ],
        )
Esempio n. 13
0
def realTimeStatusFigs():
    algo_status_fig = html.Div([
        daq.Gauge(id='algo-status-fig',
                  label="% Algorithms",
                  size=130,
                  min=0,
                  max=100)
    ],
                               className='col-4')

    hyper_status_fig = html.Div([
        daq.Gauge(id='hyper-status-fig',
                  label="% Hyperparameters",
                  size=130,
                  min=0,
                  max=100)
    ],
                                className='col-4')

    return algo_status_fig, hyper_status_fig
Esempio n. 14
0
    def second_layer(self):

        return  html.Div([create_paragraph(PVCONNECTION_TEXTS['second_layer']['heading'], \
                                    PVCONNECTION_TEXTS['second_layer']['detail']),
                    html.Div([
                        html.Div([daq.Gauge(id='nvri',
                                            color="#9B51E0",
                                            value=0,
                                            label='Increase in NVRI',
                                            max=100,
                                            min=-100,
                                            showCurrentValue=True)
                        ],className="col"),
                        html.Div([daq.Gauge(id='cri',
                                            color="#9B51E0",
                                            value=0,
                                            label='Increase in CRI',
                                            max=100, min=-100,
                                            showCurrentValue=True )
                        ], className="col"),
                    ],className="row textwhite")
                ])
Esempio n. 15
0
def generate_gauge(div_id, label_name, max_value=10):
    return daq.Gauge(
        id=div_id,
        value=0,
        label={
            'label': label_name,
            'style': {
                'color': '#C4CDD5'
            }
        },
        max=max_value,
        min=0,
    )
Esempio n. 16
0
 def update_output(w):
     l_items = t.get()
     cpu_usage = l_items[0]
     total_ram = l_items[1]
     used_ram = l_items[2]
     disk_usage = l_items[3]
     return daq.Gauge(showCurrentValue=True,
                      id='my-gauge',
                      label="CPU",
                      units="%",
                      max=100,
                      min=0,
                      value=cpu_usage), daq.Gauge(
                          showCurrentValue=True,
                          id='my-gauge2',
                          label="Disk",
                          units="%",
                          max=100,
                          min=0,
                          value=disk_usage), html.P(
                              'Total RAM :{}'.format(total_ram)), html.P(
                                  'Used RAM :{}'.format(used_ram))
def build_quick_stats_panel():
    return html.Div(
        id="quick-stats",
        className='row',
        children=
        [
            html.Div(
                id="card-1",
                className='four columns',
                children=[
                    html.H5("Operator ID"),
                    daq.LEDDisplay(
                        value='1704',
                        color=theme['secondary'],
                        size=50,
                        theme=theme
                    )
                ]
            ),

            html.Div(
                id='card-2',
                className='four columns',
                children=[
                    html.H5("Time to completion"),
                    daq.Gauge(
                        id='progress-gauge',
                        value=0,
                        size=150,
                        max=max_length * 2,
                        min=0,
                        color=theme['secondary']
                    )
                ]
            ),

            html.Div(
                id='utility-card',
                className='four columns',
                children=[
                    daq.StopButton(id='stop-button', size=160, buttonText='start')
                ]
            )
        ]
    )
Esempio n. 18
0
def sentiment(df):

    value = df.sentiment[df.sentiment != 0].mean()
    value = round(value, 1)
    value = float("%.1f" % value)
    return daq.Gauge(min=-1,
                     max=1,
                     value=value,
                     showCurrentValue=True,
                     scale={
                         'start': -1,
                         'interval': 0.5,
                         'labelInterval': 0.5
                     },
                     color='#00a0d6',
                     label=' ',
                     size=200,
                     id='sentiment')
Esempio n. 19
0
def Main():
    return html.Div([
        dcc.Location(id='url', refresh=False),
        html.Div([
            html.Div(
                html.Img(src="/assets/jolt.png"),
                className=
                "w3-container w3-cell w3-margin w3-padding w3-center jolt-box"
            ),
            MetricCard("In Queue", "metric_tasks_queued"),
            MetricCard("In Progress", "metric_tasks_running"),
            MetricCard("Completed (1h)", "metric_tasks_completed"),
            MetricCard("Failed (1h)", "metric_tasks_failed"),
        ],
                 className="w3-padding w3-border-bottom"),
        html.Div(Tabs([("Overview", [
            html.Div([
                daq.Gauge(id='metric_cluster_load',
                          label="Cluster Load",
                          value=0,
                          max=0,
                          scale={
                              'start': 0,
                              'interval': 1,
                              'labelInterval': '5'
                          }),
            ],
                     className="w3-container w3-padding"),
        ]),
                       ("Tasks",
                        SmallTabs([
                            ("Live",
                             TaskList(id="tasklist_live",
                                      columns=[
                                          "worker", "name", "identity",
                                          "queued", "started", "status"
                                      ])),
                            ("Last Hour", TaskList(id="tasklist")),
                        ],
                                  id="tabs-tasks")),
                       ("Workers", WorkerContent(id="workercontent"))]),
                 className="w3-cell-row w3-white"),
    ],
                    className="w3-light-gray")
Esempio n. 20
0
def update_graph_interactive_images(buttons,text):

    if text=="":
        return ''

    numericValue=mod.runs(str(text))*10

    print(numericValue)
    
    gauge=daq.Gauge(
    showCurrentValue=True,
    color='#FFC107',
    value=numericValue,
    label='True-Meter',
    max=10,
    min=0,
)  
    
    return gauge
Esempio n. 21
0
def predict(clicked, text):
    if clicked:
        text = [text]
        text = wrangle2(text)
        y_pred = model.predict(text)
        if y_pred == 0:
            y_pred = 'hateful'
        if y_pred == 1:
            y_pred = 'offensive'
        if y_pred == 2:
            y_pred = 'normal'
        df = pd.DataFrame(model.predict_proba(text),
                          columns=["Hateful", "Offensive", "Normal"])
        df_percent = df.mul(100).round(2).astype(str) + '%'
        output1 = f'This tweet is labeled as {y_pred}.'
        output2 = dash_table.DataTable(data=df_percent.to_dict('records'),
                                       style_cell={
                                           'textAlign': 'left',
                                           'padding': '15px'
                                       },
                                       columns=[{
                                           "name": i,
                                           "id": i
                                       } for i in df_percent.columns],
                                       style_header={
                                           'backgroundColor':
                                           'rgb(230, 230, 230)',
                                           'fontSize': '15px',
                                           'fontWeight': 'bold'
                                       })
        output3 = daq.Gauge(
            showCurrentValue=True,
            units="percentage points",
            value=(((df[["Hateful", "Offensive", "Normal"]].max()).max()) *
                   100).round(2),
            label=f'Percent probability this tweet is {y_pred}',
            size=380,
            labelPosition='bottom',
            max=100,
            min=0,
        )

        return output1, output2, output3
Esempio n. 22
0
def build_quick_stats_panel():
    return html.Div(
        id="quick-stats",
        className="row",
        children=[
            html.Div(
                id="card-1",
                className="w3-text-white",
                children=[
                    html.P("Operator ID"),
                    daq.LEDDisplay(
                        id="operator-led",
                        value="1704",
                        color="#92e0d3",
                        backgroundColor="#1e2130",
                        size=50,
                    ),
                ],
            ),
            html.Div(
                id="card-2",
                className="w3-text-white",
                children=[
                    html.P("Time to completion"),
                    daq.Gauge(
                        id="progress-gauge",
                        max=max_length * 2,
                        min=0,
                        showCurrentValue=True,  # default size 200 pixel
                    ),
                ],
            ),
            html.Div(
                id="utility-card",
                children=[
                    daq.StopButton(id="stop-button", size=160, n_clicks=0)
                ],
            ),
        ],
    )
Esempio n. 23
0
def get_layout(UPDATE_INT, config=None):

    app_layout = html.Div(
        [
            html.Div(
                [
                    dcc.Interval(
                        id="interval_component",
                        interval=UPDATE_INT * 1000,
                        n_intervals=0,
                    ),
                    dcc.Interval(
                        id="psutil_component", interval=2 * 1000, n_intervals=0
                    ),
                ],
                style=dict(textAlign="center"),
            ),
            html.Div(
                [
                    daq.Gauge(
                        id="virtual_memory",
                        min=0,
                        value=0,
                        size=150,
                        className="leftbox",
                        style=dict(textAlign="center"),
                    ),
                    daq.Gauge(
                        id="swap_memory",
                        min=0,
                        value=0,
                        size=150,
                        className="rightbox",
                        style=dict(textAlign="center"),
                    ),
                ]
            ),
            daq.LEDDisplay(
                id="timestamp",
                value="1000",
                color="#FF5E5E",
                style=dict(textAlign="center"),
            ),
            html.Br(),
            html.Div(
                children=[
                    html.Div(
                        [
                            html.Div(
                                [
                                    html.Label("Proposal"),
                                    dcc.Input(
                                        id="proposal",
                                        placeholder="Enter the proposal",
                                        type="text",
                                        value=config["proposal"],
                                    ),
                                    html.Br(),
                                    html.Label("Run Type:", className="leftbox"),
                                    dcc.Dropdown(
                                        id="run-type",
                                        options=[
                                            {"label": i, "value": i} for i in _run_types
                                        ],
                                        value=_run_types[0],
                                        className="rightbox",
                                    ),
                                    html.Hr(),
                                    daq.BooleanSwitch(id="start", on=False),
                                    html.Br(),
                                    html.Div(id="stream-info"),
                                    html.Hr(),
                                    html.Div(
                                        [
                                            dcc.Dropdown(
                                                id="problem-runs",
                                                placeholder="Problematic runs",
                                                options=[],
                                                className="leftbox",
                                            ),
                                            dcc.Textarea(
                                                id="problems-info",
                                                placeholder="Validation Message",
                                                draggable="false",
                                                readOnly=True,
                                                disabled=True,
                                                style={"width": "100%", "height": 200},
                                            ),
                                        ]
                                    ),
                                ],
                                className="pretty_container one-third column",
                            ),
                            html.Div(
                                [
                                    dcc.Dropdown(
                                        id="format-type",
                                        options=[
                                            {"label": i, "value": i} for i in _units
                                        ],
                                        value=_units[0],
                                        className="leftbox",
                                    ),
                                    dcc.Graph(id="histogram"),
                                ],
                                className="two-thirds column",
                            ),
                        ],
                        className="row",
                    )
                ]
            ),
            html.Br(),
        ]
    )

    return app_layout
Esempio n. 24
0
        html.Label(['Fatigue levels'])
        ],
             style = {
                 'font-size' : '24px',
                 'text-align' : 'center',
                 'marginTop':10,
                 'marginBottom':5,
                    }
                    ),

        html.Div([
        daq.Gauge(
        id = 'output-b',
        color={"gradient":True,"ranges":{"red":[0,40],"white":[40,60],"blue":[60,100]}},
        value= 50,
        max=100,
        min=0,
        )
        ],
        style = {
        'text-align' : 'center',
           }
        ),

        html.Div([

        html.Label(['0 = no fatigue, 100 = maximum fatigue'])
        ],
             style = {
                 'font-size' : '14px',
Esempio n. 25
0
         "height": "10%",
         "marginLeft": "34%",
         "marginBottom": "6%",
     },
 ),
 html.Div(
     [
         daq.Gauge(
             id="speed-gauge",
             showCurrentValue=True,
             units="Revolutions/Second",
             min=0,
             max=3,
             value=0,
             size=150,
             color="#FF5E5E",
             label="Revolutions Per Second (Max 3 RPS)",
             className="twelve columns",
             style={
                 "marginTop": "5%",
                 "marginBottom": "-10%",
                 "color": "#222",
             },
         )
     ],
     className="row",
     style={
         "border-radius": "1px",
         "border-width": "5px",
         "border-top": "1px solid rgb(216, 216, 216)",
     },
Esempio n. 26
0
                                         color='red',
                                         label='Off/Do Not Run =')
                       ])
          ]),
 html.Br(),
 html.Div(className='indicator-box',
          id='pgpress-container',
          children=[
              html.H4('Blue Pressure Gauge'),
              daq.Gauge(
                  id='pgpress-status',
                  min=0,
                  max=1,
                  showCurrentValue=True,
                  color={
                      "gradient": True,
                      "ranges": {
                          "green": [0, 0.3],
                          "yellow": [0.3, 0.7],
                          "red": [0.7, 1]
                      }
                  },
              ),
              html.P('Order of 1000')
          ]),
 html.Div(className='indicator-box',
          id='time-container',
          children=[
              html.H4('Time to completion (hours)'),
              daq.Gauge(id='time-to-completion',
                        min=0,
                        max=10,
     id='darktheme-daq-booleanswitch',
     className='dark-theme-control'
 ), html.Br(),
 daq.ToggleSwitch(
     id='darktheme-daq-toggleswitch',
     className='dark-theme-control'
 ), html.Br(),
 daq.ColorPicker(
     value=17,
     id='darktheme-daq-colorpicker',
     className='dark-theme-control'
 ), html.Br(),
 daq.Gauge(
     min=0,
     max=10,
     value=6,
     color=theme['primary'],
     id='darktheme-daq-gauge',
     className='dark-theme-control'
 ), html.Br(),
 daq.GraduatedBar(
     value=4,
     color=theme['primary'],
     id='darktheme-daq-graduatedbar',
     className='dark-theme-control'
 ), html.Br(),
 daq.Indicator(
     value=True,
     color=theme['primary'],
     id='darktheme-daq-indicator',
     className='dark-theme-control'
 ), html.Br(),
Esempio n. 28
0
        25: {'label': '25'},
        50: {'label': '50'},
        75: {'label': '75'},
        100: {'label': '100'},
                                
    }),
            
],className="pretty_container four columns"),

  html.Div([ 

    daq.Gauge(
        id='my-gauge',
        showCurrentValue=True,
        color={"gradient":True,"ranges":{"red":[0,30],"yellow":[30,60],"green":[60,100]}},
        label="Test Score",
        max=100,
        min=0,
        value=1
    ),
])
    ])


@app.callback(
    Output('my-gauge', 'value'),
    [Input('Paper1-slider', 'value'),
     Input('Paper2-slider', 'value'),
     Input('Paper3-slider', 'value'),
     Input('Paper4-slider', 'value'),
     Input('Paper5-slider', 'value'),
Esempio n. 29
0
        40: {'label': '40'},
        60: {'label': '60'},
        80: {'label': '80'},
        100: {'label': '100'},
                                
    }),

],className="pretty_container four columns"),

  html.Div([ 

    daq.Gauge(
       id='my-gauge',
      showCurrentValue=True,
     color={"gradient":True,"ranges":{"red":[0,40],"yellow":[40,70],"green":[70,100]}},
    label="Probability",
   max=100,
   min=0,
   value=50
   ),
])
    ])


@app.callback(
    Output('my-gauge', 'value'),
    [Input('gre-slider', 'value'),
     Input('toefl-slider', 'value'),
     Input('rating-slider', 'value'),
     Input('sop-slider', 'value'),
     Input('lor-slider', 'value'),
Esempio n. 30
0
 

  html.Div([

 

    daq.Gauge(

        id='FinalGrade-gauge',

        showCurrentValue=True,

        color={"gradient":True,"ranges":{"red":[0,5],"yellow":[5,15],"green":[15,20]}},

        label="Final Grade",

        max=20,

        min=0,

        value=10

    ),

])

    ])