Esempio n. 1
0
    def get_li(self, kernel_type, li_recip):

        # relative azimuth angle
        # ensure it is in a [0,2] pi range
        phi = da.fabs(
            (self.angle_info.raa_rad % (2.0 * self.global_args.m_pi)))

        cos_phi = da.cos(phi)
        sin_phi = da.sin(phi)

        tanti = da.tan(self.angle_info.sza_rad)
        tantv = da.tan(self.angle_info.vza_rad)

        cos1, sin1, tan1 = self.get_pangles(tantv, self.global_args.br,
                                            self.global_args.nearly_zero)
        cos2, sin2, tan2 = self.get_pangles(tanti, self.global_args.br,
                                            self.global_args.nearly_zero)

        # sets cos & sin phase angle terms
        cos_phaang, phaang, sin_phaang = self.get_phaang(
            cos1, cos2, sin1, sin2, cos_phi)
        distance = self.get_distance(tan1, tan2, cos_phi)
        overlap_info = self.get_overlap(cos1, cos2, tan1, tan2, sin_phi,
                                        distance, self.global_args.hb,
                                        self.global_args.m_pi)

        if kernel_type.lower() == 'sparse':

            if li_recip:
                li = overlap_info.overlap - overlap_info.temp + 0.5 * (
                    1.0 + cos_phaang) / cos1 / cos2
            else:
                li = overlap_info.overlap - overlap_info.temp + 0.5 * (
                    1.0 + cos_phaang) / cos1

        else:

            if kernel_type.lower() == 'dense':

                if li_recip:
                    li = (1.0 + cos_phaang) / (
                        cos1 * cos2 *
                        (overlap_info.temp - overlap_info.overlap)) - 2.0
                else:
                    li = (1.0 + cos_phaang) / (
                        cos1 *
                        (overlap_info.temp - overlap_info.overlap)) - 2.0

        return li
Esempio n. 2
0
def test_arithmetic():
    x = np.arange(5).astype('f4') + 2
    y = np.arange(5).astype('i8') + 2
    z = np.arange(5).astype('i4') + 2
    a = da.from_array(x, chunks=(2,))
    b = da.from_array(y, chunks=(2,))
    c = da.from_array(z, chunks=(2,))
    assert eq(a + b, x + y)
    assert eq(a * b, x * y)
    assert eq(a - b, x - y)
    assert eq(a / b, x / y)
    assert eq(b & b, y & y)
    assert eq(b | b, y | y)
    assert eq(b ^ b, y ^ y)
    assert eq(a // b, x // y)
    assert eq(a ** b, x ** y)
    assert eq(a % b, x % y)
    assert eq(a > b, x > y)
    assert eq(a < b, x < y)
    assert eq(a >= b, x >= y)
    assert eq(a <= b, x <= y)
    assert eq(a == b, x == y)
    assert eq(a != b, x != y)

    assert eq(a + 2, x + 2)
    assert eq(a * 2, x * 2)
    assert eq(a - 2, x - 2)
    assert eq(a / 2, x / 2)
    assert eq(b & True, y & True)
    assert eq(b | True, y | True)
    assert eq(b ^ True, y ^ True)
    assert eq(a // 2, x // 2)
    assert eq(a ** 2, x ** 2)
    assert eq(a % 2, x % 2)
    assert eq(a > 2, x > 2)
    assert eq(a < 2, x < 2)
    assert eq(a >= 2, x >= 2)
    assert eq(a <= 2, x <= 2)
    assert eq(a == 2, x == 2)
    assert eq(a != 2, x != 2)

    assert eq(2 + b, 2 + y)
    assert eq(2 * b, 2 * y)
    assert eq(2 - b, 2 - y)
    assert eq(2 / b, 2 / y)
    assert eq(True & b, True & y)
    assert eq(True | b, True | y)
    assert eq(True ^ b, True ^ y)
    assert eq(2 // b, 2 // y)
    assert eq(2 ** b, 2 ** y)
    assert eq(2 % b, 2 % y)
    assert eq(2 > b, 2 > y)
    assert eq(2 < b, 2 < y)
    assert eq(2 >= b, 2 >= y)
    assert eq(2 <= b, 2 <= y)
    assert eq(2 == b, 2 == y)
    assert eq(2 != b, 2 != y)

    assert eq(-a, -x)
    assert eq(abs(a), abs(x))
    assert eq(~(a == b), ~(x == y))
    assert eq(~(a == b), ~(x == y))

    assert eq(da.logaddexp(a, b), np.logaddexp(x, y))
    assert eq(da.logaddexp2(a, b), np.logaddexp2(x, y))
    assert eq(da.exp(b), np.exp(y))
    assert eq(da.log(a), np.log(x))
    assert eq(da.log10(a), np.log10(x))
    assert eq(da.log1p(a), np.log1p(x))
    assert eq(da.expm1(b), np.expm1(y))
    assert eq(da.sqrt(a), np.sqrt(x))
    assert eq(da.square(a), np.square(x))

    assert eq(da.sin(a), np.sin(x))
    assert eq(da.cos(b), np.cos(y))
    assert eq(da.tan(a), np.tan(x))
    assert eq(da.arcsin(b/10), np.arcsin(y/10))
    assert eq(da.arccos(b/10), np.arccos(y/10))
    assert eq(da.arctan(b/10), np.arctan(y/10))
    assert eq(da.arctan2(b*10, a), np.arctan2(y*10, x))
    assert eq(da.hypot(b, a), np.hypot(y, x))
    assert eq(da.sinh(a), np.sinh(x))
    assert eq(da.cosh(b), np.cosh(y))
    assert eq(da.tanh(a), np.tanh(x))
    assert eq(da.arcsinh(b*10), np.arcsinh(y*10))
    assert eq(da.arccosh(b*10), np.arccosh(y*10))
    assert eq(da.arctanh(b/10), np.arctanh(y/10))
    assert eq(da.deg2rad(a), np.deg2rad(x))
    assert eq(da.rad2deg(a), np.rad2deg(x))

    assert eq(da.logical_and(a < 1, b < 4), np.logical_and(x < 1, y < 4))
    assert eq(da.logical_or(a < 1, b < 4), np.logical_or(x < 1, y < 4))
    assert eq(da.logical_xor(a < 1, b < 4), np.logical_xor(x < 1, y < 4))
    assert eq(da.logical_not(a < 1), np.logical_not(x < 1))
    assert eq(da.maximum(a, 5 - a), np.maximum(a, 5 - a))
    assert eq(da.minimum(a, 5 - a), np.minimum(a, 5 - a))
    assert eq(da.fmax(a, 5 - a), np.fmax(a, 5 - a))
    assert eq(da.fmin(a, 5 - a), np.fmin(a, 5 - a))

    assert eq(da.isreal(a + 1j * b), np.isreal(x + 1j * y))
    assert eq(da.iscomplex(a + 1j * b), np.iscomplex(x + 1j * y))
    assert eq(da.isfinite(a), np.isfinite(x))
    assert eq(da.isinf(a), np.isinf(x))
    assert eq(da.isnan(a), np.isnan(x))
    assert eq(da.signbit(a - 3), np.signbit(x - 3))
    assert eq(da.copysign(a - 3, b), np.copysign(x - 3, y))
    assert eq(da.nextafter(a - 3, b), np.nextafter(x - 3, y))
    assert eq(da.ldexp(c, c), np.ldexp(z, z))
    assert eq(da.fmod(a * 12, b), np.fmod(x * 12, y))
    assert eq(da.floor(a * 0.5), np.floor(x * 0.5))
    assert eq(da.ceil(a), np.ceil(x))
    assert eq(da.trunc(a / 2), np.trunc(x / 2))

    assert eq(da.degrees(b), np.degrees(y))
    assert eq(da.radians(a), np.radians(x))

    assert eq(da.rint(a + 0.3), np.rint(x + 0.3))
    assert eq(da.fix(a - 2.5), np.fix(x - 2.5))

    assert eq(da.angle(a + 1j), np.angle(x + 1j))
    assert eq(da.real(a + 1j), np.real(x + 1j))
    assert eq((a + 1j).real, np.real(x + 1j))
    assert eq(da.imag(a + 1j), np.imag(x + 1j))
    assert eq((a + 1j).imag, np.imag(x + 1j))
    assert eq(da.conj(a + 1j * b), np.conj(x + 1j * y))
    assert eq((a + 1j * b).conj(), (x + 1j * y).conj())

    assert eq(da.clip(b, 1, 4), np.clip(y, 1, 4))
    assert eq(da.fabs(b), np.fabs(y))
    assert eq(da.sign(b - 2), np.sign(y - 2))

    l1, l2 = da.frexp(a)
    r1, r2 = np.frexp(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    l1, l2 = da.modf(a)
    r1, r2 = np.modf(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    assert eq(da.around(a, -1), np.around(x, -1))
Esempio n. 3
0
class RexCallPlugin(BaseRexPlugin):
    """
    RexCall is used for expressions, which calculate something.
    An example is

        SELECT a + b FROM ...

    but also

        a > 3

    Typically, a RexCall has inputs (which can be RexNodes again)
    and calls a function on these inputs.
    The inputs can either be a column or a scalar value.
    """

    class_name = "org.apache.calcite.rex.RexCall"

    OPERATION_MAPPING = {
        # "binary" functions
        "and":
        ReduceOperation(operation=operator.and_),
        "or":
        ReduceOperation(operation=operator.or_),
        ">":
        ReduceOperation(operation=operator.gt),
        ">=":
        ReduceOperation(operation=operator.ge),
        "<":
        ReduceOperation(operation=operator.lt),
        "<=":
        ReduceOperation(operation=operator.le),
        "=":
        ReduceOperation(operation=operator.eq),
        "<>":
        ReduceOperation(operation=operator.ne),
        "+":
        ReduceOperation(operation=operator.add),
        "-":
        ReduceOperation(operation=operator.sub),
        "/":
        ReduceOperation(operation=SQLDivisionOperator()),
        "*":
        ReduceOperation(operation=operator.mul),
        # special operations
        "case":
        CaseOperation(),
        "like":
        LikeOperation(),
        "similar to":
        SimilarOperation(),
        "not":
        NotOperation(),
        "is null":
        IsNullOperation(),
        "is not null":
        NotOperation().of(IsNullOperation()),
        "is true":
        IsTrueOperation(),
        "is not true":
        NotOperation().of(IsTrueOperation()),
        "is false":
        IsFalseOperation(),
        "is not false":
        NotOperation().of(IsFalseOperation()),
        "is unknown":
        IsNullOperation(),
        "is not unknown":
        NotOperation().of(IsNullOperation()),
        "rand":
        RandOperation(),
        "rand_integer":
        RandIntegerOperation(),
        # Unary math functions
        "abs":
        TensorScalarOperation(lambda x: x.abs(), np.abs),
        "acos":
        Operation(da.arccos),
        "asin":
        Operation(da.arcsin),
        "atan":
        Operation(da.arctan),
        "atan2":
        Operation(da.arctan2),
        "cbrt":
        Operation(da.cbrt),
        "ceil":
        CeilFloorOperation("ceil"),
        "cos":
        Operation(da.cos),
        "cot":
        Operation(lambda x: 1 / da.tan(x)),
        "degrees":
        Operation(da.degrees),
        "exp":
        Operation(da.exp),
        "floor":
        CeilFloorOperation("floor"),
        "log10":
        Operation(da.log10),
        "ln":
        Operation(da.log),
        # "mod": Operation(da.mod), # needs cast
        "power":
        Operation(da.power),
        "radians":
        Operation(da.radians),
        "round":
        TensorScalarOperation(lambda x, *ops: x.round(*ops), np.round),
        "sign":
        Operation(da.sign),
        "sin":
        Operation(da.sin),
        "tan":
        Operation(da.tan),
        "truncate":
        Operation(da.trunc),
        # string operations
        "||":
        ReduceOperation(operation=operator.add),
        "char_length":
        TensorScalarOperation(lambda x: x.str.len(), lambda x: len(x)),
        "upper":
        TensorScalarOperation(lambda x: x.str.upper(), lambda x: x.upper()),
        "lower":
        TensorScalarOperation(lambda x: x.str.lower(), lambda x: x.lower()),
        "position":
        PositionOperation(),
        "trim":
        TrimOperation(),
        "overlay":
        OverlayOperation(),
        "substring":
        SubStringOperation(),
        "initcap":
        TensorScalarOperation(lambda x: x.str.title(), lambda x: x.title()),
        # date/time operations
        "extract":
        ExtractOperation(),
        "localtime":
        Operation(lambda *args: pd.Timestamp.now()),
        "localtimestamp":
        Operation(lambda *args: pd.Timestamp.now()),
        "current_time":
        Operation(lambda *args: pd.Timestamp.now()),
        "current_date":
        Operation(lambda *args: pd.Timestamp.now()),
        "current_timestamp":
        Operation(lambda *args: pd.Timestamp.now()),
        "last_day":
        TensorScalarOperation(
            lambda x: x + pd.tseries.offsets.MonthEnd(1),
            lambda x: convert_to_datetime(x) + pd.tseries.offsets.MonthEnd(1),
        ),
    }

    def convert(
        self,
        rex: "org.apache.calcite.rex.RexNode",
        dc: DataContainer,
        context: "dask_sql.Context",
    ) -> SeriesOrScalar:
        # Prepare the operands by turning the RexNodes into python expressions
        operands = [
            RexConverter.convert(o, dc, context=context)
            for o in rex.getOperands()
        ]

        # Now use the operator name in the mapping
        operator_name = str(rex.getOperator().getName())
        operator_name = operator_name.lower()

        try:
            operation = self.OPERATION_MAPPING[operator_name]
        except KeyError:
            try:
                operation = context.functions[operator_name]
            except KeyError:
                raise NotImplementedError(
                    f"{operator_name} not (yet) implemented")

        logger.debug(
            f"Executing {operator_name} on {[str(LoggableDataFrame(df)) for df in operands]}"
        )
        if hasattr(operation, "needs_dc") and operation.needs_dc:
            return operation(*operands, dc=dc)
        else:
            return operation(*operands)
Esempio n. 4
0
def test_arithmetic():
    x = np.arange(5).astype('f4') + 2
    y = np.arange(5).astype('i8') + 2
    z = np.arange(5).astype('i4') + 2
    a = da.from_array(x, chunks=(2, ))
    b = da.from_array(y, chunks=(2, ))
    c = da.from_array(z, chunks=(2, ))
    assert eq(a + b, x + y)
    assert eq(a * b, x * y)
    assert eq(a - b, x - y)
    assert eq(a / b, x / y)
    assert eq(b & b, y & y)
    assert eq(b | b, y | y)
    assert eq(b ^ b, y ^ y)
    assert eq(a // b, x // y)
    assert eq(a**b, x**y)
    assert eq(a % b, x % y)
    assert eq(a > b, x > y)
    assert eq(a < b, x < y)
    assert eq(a >= b, x >= y)
    assert eq(a <= b, x <= y)
    assert eq(a == b, x == y)
    assert eq(a != b, x != y)

    assert eq(a + 2, x + 2)
    assert eq(a * 2, x * 2)
    assert eq(a - 2, x - 2)
    assert eq(a / 2, x / 2)
    assert eq(b & True, y & True)
    assert eq(b | True, y | True)
    assert eq(b ^ True, y ^ True)
    assert eq(a // 2, x // 2)
    assert eq(a**2, x**2)
    assert eq(a % 2, x % 2)
    assert eq(a > 2, x > 2)
    assert eq(a < 2, x < 2)
    assert eq(a >= 2, x >= 2)
    assert eq(a <= 2, x <= 2)
    assert eq(a == 2, x == 2)
    assert eq(a != 2, x != 2)

    assert eq(2 + b, 2 + y)
    assert eq(2 * b, 2 * y)
    assert eq(2 - b, 2 - y)
    assert eq(2 / b, 2 / y)
    assert eq(True & b, True & y)
    assert eq(True | b, True | y)
    assert eq(True ^ b, True ^ y)
    assert eq(2 // b, 2 // y)
    assert eq(2**b, 2**y)
    assert eq(2 % b, 2 % y)
    assert eq(2 > b, 2 > y)
    assert eq(2 < b, 2 < y)
    assert eq(2 >= b, 2 >= y)
    assert eq(2 <= b, 2 <= y)
    assert eq(2 == b, 2 == y)
    assert eq(2 != b, 2 != y)

    assert eq(-a, -x)
    assert eq(abs(a), abs(x))
    assert eq(~(a == b), ~(x == y))
    assert eq(~(a == b), ~(x == y))

    assert eq(da.logaddexp(a, b), np.logaddexp(x, y))
    assert eq(da.logaddexp2(a, b), np.logaddexp2(x, y))
    assert eq(da.exp(b), np.exp(y))
    assert eq(da.log(a), np.log(x))
    assert eq(da.log10(a), np.log10(x))
    assert eq(da.log1p(a), np.log1p(x))
    assert eq(da.expm1(b), np.expm1(y))
    assert eq(da.sqrt(a), np.sqrt(x))
    assert eq(da.square(a), np.square(x))

    assert eq(da.sin(a), np.sin(x))
    assert eq(da.cos(b), np.cos(y))
    assert eq(da.tan(a), np.tan(x))
    assert eq(da.arcsin(b / 10), np.arcsin(y / 10))
    assert eq(da.arccos(b / 10), np.arccos(y / 10))
    assert eq(da.arctan(b / 10), np.arctan(y / 10))
    assert eq(da.arctan2(b * 10, a), np.arctan2(y * 10, x))
    assert eq(da.hypot(b, a), np.hypot(y, x))
    assert eq(da.sinh(a), np.sinh(x))
    assert eq(da.cosh(b), np.cosh(y))
    assert eq(da.tanh(a), np.tanh(x))
    assert eq(da.arcsinh(b * 10), np.arcsinh(y * 10))
    assert eq(da.arccosh(b * 10), np.arccosh(y * 10))
    assert eq(da.arctanh(b / 10), np.arctanh(y / 10))
    assert eq(da.deg2rad(a), np.deg2rad(x))
    assert eq(da.rad2deg(a), np.rad2deg(x))

    assert eq(da.logical_and(a < 1, b < 4), np.logical_and(x < 1, y < 4))
    assert eq(da.logical_or(a < 1, b < 4), np.logical_or(x < 1, y < 4))
    assert eq(da.logical_xor(a < 1, b < 4), np.logical_xor(x < 1, y < 4))
    assert eq(da.logical_not(a < 1), np.logical_not(x < 1))
    assert eq(da.maximum(a, 5 - a), np.maximum(a, 5 - a))
    assert eq(da.minimum(a, 5 - a), np.minimum(a, 5 - a))
    assert eq(da.fmax(a, 5 - a), np.fmax(a, 5 - a))
    assert eq(da.fmin(a, 5 - a), np.fmin(a, 5 - a))

    assert eq(da.isreal(a + 1j * b), np.isreal(x + 1j * y))
    assert eq(da.iscomplex(a + 1j * b), np.iscomplex(x + 1j * y))
    assert eq(da.isfinite(a), np.isfinite(x))
    assert eq(da.isinf(a), np.isinf(x))
    assert eq(da.isnan(a), np.isnan(x))
    assert eq(da.signbit(a - 3), np.signbit(x - 3))
    assert eq(da.copysign(a - 3, b), np.copysign(x - 3, y))
    assert eq(da.nextafter(a - 3, b), np.nextafter(x - 3, y))
    assert eq(da.ldexp(c, c), np.ldexp(z, z))
    assert eq(da.fmod(a * 12, b), np.fmod(x * 12, y))
    assert eq(da.floor(a * 0.5), np.floor(x * 0.5))
    assert eq(da.ceil(a), np.ceil(x))
    assert eq(da.trunc(a / 2), np.trunc(x / 2))

    assert eq(da.degrees(b), np.degrees(y))
    assert eq(da.radians(a), np.radians(x))

    assert eq(da.rint(a + 0.3), np.rint(x + 0.3))
    assert eq(da.fix(a - 2.5), np.fix(x - 2.5))

    assert eq(da.angle(a + 1j), np.angle(x + 1j))
    assert eq(da.real(a + 1j), np.real(x + 1j))
    assert eq((a + 1j).real, np.real(x + 1j))
    assert eq(da.imag(a + 1j), np.imag(x + 1j))
    assert eq((a + 1j).imag, np.imag(x + 1j))
    assert eq(da.conj(a + 1j * b), np.conj(x + 1j * y))
    assert eq((a + 1j * b).conj(), (x + 1j * y).conj())

    assert eq(da.clip(b, 1, 4), np.clip(y, 1, 4))
    assert eq(da.fabs(b), np.fabs(y))
    assert eq(da.sign(b - 2), np.sign(y - 2))

    l1, l2 = da.frexp(a)
    r1, r2 = np.frexp(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    l1, l2 = da.modf(a)
    r1, r2 = np.modf(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    assert eq(da.around(a, -1), np.around(x, -1))
Esempio n. 5
0
                                      H[0, :] * da.cos(p) + (H[1, :] * da.sin(r) + H[2, :] * da.cos(r)) * da.sin(p))

fG = lambda Axyz, Ag, Cg: da.dot(Ag.T, (Axyz - Cg[0, :]).T)
fGi = lambda Ax, Ay, Az, Ag, Cg, i: da.dot(Ag.T, (da.column_stack((Ax, Ay, Az))[slice(*i)] - Cg[0, :]).T)

fbinningClip = lambda x, bin2_iStEn, bin1_nAverage: da.mean(da.reshape(x[slice(*bin2_iStEn)], (-1, bin1_nAverage)), 1)
fbinning = lambda x, bin1_nAverage: da.mean(da.reshape(x, (-1, bin1_nAverage)), 1)
repeat3shift1 = lambda A2: [A2[t:(len(A2) - 2 + t)] for t in range(3)]
median3cols = lambda a, b, c: da.where(a < b, da.where(c < a, a, da.where(b < c, b, c)),
                                       da.where(a < c, a, da.where(c < b, b, c)))
median3 = lambda x: da.hstack((np.NaN, median3cols(*repeat3shift1(x)), np.NaN))
# not convertable to dask easily:
fVabs_old = lambda Gxyz, kVabs: np.polyval(kVabs.flat, np.sqrt(np.tan(fInclination(Gxyz))))
rep2mean = lambda x, bOk: np.interp(np.arange(len(x)), np.flatnonzero(bOk), x[bOk], np.NaN, np.NaN)
fForce2Vabs_fitted = lambda x: da.where(x > 2, 2, da.where(x < 1, 0.25 * x, 0.25 * x + 0.3 * (x - 1) ** 4))
fIncl2Force = lambda incl: da.sqrt(da.tan(incl))
fVabs = lambda Gxyz, kVabs: fForce2Vabs_fitted(fIncl2Force(fInclination(Gxyz)))
f = lambda fun, *args: fun(*args)
positiveInd = lambda i, L: np.int32(da.where(i < 0, L - i, i))
minInterval = lambda iLims1, iLims2, L: f(
    lambda iL1, iL2: da.transpose([max(iL1[:, 0], iL2[:, 0]), min(iL1[:, -1], iL2[:, -1])]), positiveInd(iLims1, L),
    positiveInd(iLims2, L))
fStEn2bool = lambda iStEn, length: da.hstack(
    [(da.ones(iEn2iSt, dtype=np.bool8) if b else da.zeros(iEn2iSt, dtype=np.bool8)) for iEn2iSt, b in da.vstack((
        da.diff(
            da.hstack(
                (
                    0,
                    iStEn.flat,
                    length))),
        da.hstack(