Esempio n. 1
0
 def _avg_image(self, images):
     images, auxvars, weights = images
     print("{0}: plotting {1} images".format(self.name, images.shape[0]))
     print("min weight: {0}   max weight: {1}".format(weights.min(), weights.max()))
     with ProgressBar():
         avg_image = da.tensordot(images, weights, axes=(0, 0)).compute() / weights.sum()
     return avg_image
Esempio n. 2
0
def iter_tdot(data, masks, repeats):
    frames = len(data)
    maskcount = len(masks)
    # can't preallocate here as tensordot doesn't have an out-parameter
    for repeat in range(repeats):
        result = da.tensordot(data, masks, (1, 1))
        result.compute(num_workers=WORKERS)
    return result
Esempio n. 3
0
def initbf(varr: xr.DataArray, A: xr.DataArray,
           C: xr.DataArray) -> Tuple[xr.DataArray, xr.DataArray]:
    """
    Initialize background terms given spatial and temporal components of cells.

    A movie representation (with dimensions "height" "width" and "frame") of
    estimated cell activities are computed as the product between the spatial
    components matrix and the temporal components matrix of cells over the
    "unit_id" dimension. Then the residule movie is computed by subtracting the
    estimated cell activity movie from the input movie. Then the spatial
    footprint of background `b` is the mean of the residule movie over "frame"
    dimension, and the temporal component of background `f` is the mean of the
    residule movie over "height" and "width" dimensions.

    Parameters
    ----------
    varr : xr.DataArray
        Input movie data. Should have dimensions ("frame", "height", "width").
    A : xr.DataArray
        Estimation of spatial footprints of cells. Should have dimensions
        ("unit_id", "height", "width").
    C : xr.DataArray
        Estimation of temporal activities of cells. Should have dimensions
        ("unit_id", "frame").

    Returns
    -------
    b : xr.DataArray
        Initial estimation of the spatial footprint of background. Has
        dimensions ("height", "width").
    f : xr.DataArray
        Initial estimation of the temporal activity of background. Has dimension
        "frame".
    """
    A = A.data.map_blocks(sparse.COO).compute()
    Yb = (varr - darr.tensordot(C, A, axes=[(0, ), (0, )])).clip(0)
    b = Yb.mean("frame")
    f = Yb.mean(["height", "width"])
    arr_opt = fct.partial(custom_arr_optimize,
                          rename_dict={"tensordot": "tensordot_restricted"})
    with da.config.set(array_optimize=arr_opt):
        b = da.optimize(b)[0]
        f = da.optimize(f)[0]
    b, f = da.compute([b, f])[0]
    return b, f
Esempio n. 4
0
def test_tensordot():
    x = np.arange(400).reshape((20, 20))
    a = da.from_array(x, chunks=(5, 4))
    y = np.arange(200).reshape((20, 10))
    b = da.from_array(y, chunks=(4, 5))

    for axes in [1, (1, 0)]:
        assert_eq(da.tensordot(a, b, axes=axes), np.tensordot(x, y, axes=axes))
        assert_eq(da.tensordot(x, b, axes=axes), np.tensordot(x, y, axes=axes))
        assert_eq(da.tensordot(a, y, axes=axes), np.tensordot(x, y, axes=axes))

    assert same_keys(da.tensordot(a, b, axes=(1, 0)),
                     da.tensordot(a, b, axes=(1, 0)))
    with pytest.warns(None):  # Increasing number of chunks warning
        assert not same_keys(da.tensordot(a, b, axes=0),
                             da.tensordot(a, b, axes=1))
def test_tensordot():
    x = np.arange(400).reshape((20, 20))
    a = da.from_array(x, chunks=(5, 4))
    y = np.arange(200).reshape((20, 10))
    b = da.from_array(y, chunks=(4, 5))

    for axes in [1, (1, 0)]:
        assert_eq(da.tensordot(a, b, axes=axes), np.tensordot(x, y, axes=axes))
        assert_eq(da.tensordot(x, b, axes=axes), np.tensordot(x, y, axes=axes))
        assert_eq(da.tensordot(a, y, axes=axes), np.tensordot(x, y, axes=axes))

    assert same_keys(da.tensordot(a, b, axes=(1, 0)),
                     da.tensordot(a, b, axes=(1, 0)))
    with pytest.warns(None):  # Increasing number of chunks warning
        assert not same_keys(da.tensordot(a, b, axes=0),
                             da.tensordot(a, b, axes=1))
Esempio n. 6
0
def test_tensordot():
    x = da.random.random((2, 3, 4), chunks=(1, 2, 2))
    x[x < 0.8] = 0
    y = da.random.random((4, 3, 2), chunks=(2, 2, 1))
    y[y < 0.8] = 0

    xx = x.map_blocks(sparse.COO.from_numpy)
    yy = y.map_blocks(sparse.COO.from_numpy)

    assert_eq(da.tensordot(x, y, axes=(2, 0)), da.tensordot(xx, yy, axes=(2, 0)))
    assert_eq(da.tensordot(x, y, axes=(1, 1)), da.tensordot(xx, yy, axes=(1, 1)))
    assert_eq(
        da.tensordot(x, y, axes=((1, 2), (1, 0))),
        da.tensordot(xx, yy, axes=((1, 2), (1, 0))),
    )
Esempio n. 7
0
def test_tensordot():
    x = da.random.random((2, 3, 4), chunks=(1, 2, 2))
    x[x < 0.4] = 0
    y = da.random.random((4, 3, 2), chunks=(2, 2, 1))
    y[y < 0.4] = 0

    xx = da.ma.masked_equal(x, 0)
    yy = da.ma.masked_equal(y, 0)

    assert_eq(da.tensordot(x, y, axes=(2, 0)),
              da.ma.filled(da.tensordot(xx, yy, axes=(2, 0)), 0))
    assert_eq(da.tensordot(x, y, axes=(1, 1)),
              da.ma.filled(da.tensordot(xx, yy, axes=(1, 1)), 0))
    assert_eq(da.tensordot(x, y, axes=((1, 2), (1, 0))),
              da.ma.filled(da.tensordot(xx, yy, axes=((1, 2), (1, 0))), 0))
Esempio n. 8
0
def test_tensordot():
    x = da.random.random((2, 3, 4), chunks=(1, 2, 2))
    x[x < 0.4] = 0
    y = da.random.random((4, 3, 2), chunks=(2, 2, 1))
    y[y < 0.4] = 0

    xx = da.ma.masked_equal(x, 0)
    yy = da.ma.masked_equal(y, 0)

    assert_eq(da.tensordot(x, y, axes=(2, 0)),
              da.ma.filled(da.tensordot(xx, yy, axes=(2, 0)), 0))
    assert_eq(da.tensordot(x, y, axes=(1, 1)),
              da.ma.filled(da.tensordot(xx, yy, axes=(1, 1)), 0))
    assert_eq(da.tensordot(x, y, axes=((1, 2), (1, 0))),
              da.ma.filled(da.tensordot(xx, yy, axes=((1, 2), (1, 0))), 0))
Esempio n. 9
0
def test_tensordot():
    x = da.random.random((2, 3, 4), chunks=(1, 2, 2))
    x[x < 0.8] = 0
    y = da.random.random((4, 3, 2), chunks=(2, 2, 1))
    y[y < 0.8] = 0

    xx = x.map_blocks(sparse.COO.from_numpy)
    yy = y.map_blocks(sparse.COO.from_numpy)

    assert_eq(da.tensordot(x, y, axes=(2, 0)),
              da.tensordot(xx, yy, axes=(2, 0)))
    assert_eq(da.tensordot(x, y, axes=(1, 1)),
              da.tensordot(xx, yy, axes=(1, 1)))
    assert_eq(da.tensordot(x, y, axes=((1, 2), (1, 0))),
              da.tensordot(xx, yy, axes=((1, 2), (1, 0))))
Esempio n. 10
0
def test_tensordot():
    x = np.arange(400).reshape((20, 20))
    a = da.from_array(x, chunks=(5, 4))
    y = np.arange(200).reshape((20, 10))
    b = da.from_array(y, chunks=(4, 5))

    for axes in [1, (1, 0)]:
        assert_eq(da.tensordot(a, b, axes=axes), np.tensordot(x, y, axes=axes))
        assert_eq(da.tensordot(x, b, axes=axes), np.tensordot(x, y, axes=axes))
        assert_eq(da.tensordot(a, y, axes=axes), np.tensordot(x, y, axes=axes))

    assert same_keys(da.tensordot(a, b, axes=(1, 0)),
                     da.tensordot(a, b, axes=(1, 0)))

    # Increasing number of chunks warning
    with pytest.warns(None if sys.version_info[0] ==
                      2 else da.PerformanceWarning):
        assert not same_keys(da.tensordot(a, b, axes=0),
                             da.tensordot(a, b, axes=1))
Esempio n. 11
0
def initC(varr: xr.DataArray, A: xr.DataArray) -> xr.DataArray:
    """
    Initialize temporal component given spatial footprints.

    The spatial footprints of each cell is first normalized to unit sum. Then
    the temporal component is computed as the tensor dot product between the
    input movie and the spatial footprints over the "height" and "width"
    dimensions. In other word, the initial temporal component is a weighted
    average of fluorescence activities in the input data with weights defined by
    spatial footprints.

    Parameters
    ----------
    varr : xr.DataArray
        Input movie data. Should have dimensions ("height", "width", "frame").
    A : xr.DataArray
        Spatial footprints of cells. Should have dimensions ("unit_id",
        "height", "width").

    Returns
    -------
    C : xr.DataArray
        The initial estimation of temporal components for each cell. Should have
        dimensions ("unit_id", "frame").
    """
    uids = A.coords["unit_id"]
    fms = varr.coords["frame"]
    A = A.data.map_blocks(
        sparse.COO).map_blocks(lambda a: a / a.sum()).compute()
    C = darr.tensordot(A, varr, axes=[(1, 2), (1, 2)])
    C = xr.DataArray(C,
                     dims=["unit_id", "frame"],
                     coords={
                         "unit_id": uids,
                         "frame": fms
                     })
    return C
def test_tensordot_2(axes):
    x = np.arange(4 * 4 * 4).reshape((4, 4, 4))
    y = da.from_array(x, chunks=2)

    assert_eq(da.tensordot(y, y, axes=axes), np.tensordot(x, x, axes=axes))
Esempio n. 13
0
def test_tensordot_2(axes):
    x = np.arange(4 * 4 * 4).reshape((4, 4, 4))
    y = da.from_array(x, chunks=2)

    assert_eq(da.tensordot(y, y, axes=axes),
              np.tensordot(x, x, axes=axes))
Esempio n. 14
0
def test_tensordot_more_than_26_dims():
    ndim = 27
    x = np.broadcast_to(1, [2] * ndim)
    dx = da.from_array(x, chunks=-1)
    assert_eq(da.tensordot(dx, dx, ndim), np.array(2**ndim))
Esempio n. 15
0
    lambda x: x,
    lambda x: da.expm1(x),
    lambda x: 2 * x,
    lambda x: x / 2,
    lambda x: x**2,
    lambda x: x + x,
    lambda x: x * x,
    lambda x: x[0],
    lambda x: x[:, 1],
    lambda x: x[:1, None, 1:3],
    lambda x: x.T,
    lambda x: da.transpose(x, (1, 2, 0)),
    lambda x: x.sum(),
    lambda x: x.dot(np.arange(x.shape[-1])),
    lambda x: x.dot(np.eye(x.shape[-1])),
    lambda x: da.tensordot(x, np.ones(x.shape[:2]), axes=[(0, 1), (0, 1)]),
    lambda x: x.sum(axis=0),
    lambda x: x.max(axis=0),
    lambda x: x.sum(axis=(1, 2)),
    lambda x: x.astype(np.complex128),
    lambda x: x.map_blocks(lambda x: x * 2),
    lambda x: x.round(1),
    lambda x: x.reshape((x.shape[0] * x.shape[1], x.shape[2])),
    lambda x: abs(x),
    lambda x: x > 0.5,
    lambda x: x.rechunk((4, 4, 4)),
    lambda x: x.rechunk((2, 2, 1)),
]


@pytest.mark.parametrize('func', functions)
Esempio n. 16
0
    lambda x: x,
    pytest.mark.xfail(lambda x: da.expm1(x), reason="expm1 isn't a proper ufunc"),
    lambda x: 2 * x,
    lambda x: x / 2,
    lambda x: x**2,
    lambda x: x + x,
    lambda x: x * x,
    lambda x: x[0],
    lambda x: x[:, 1],
    lambda x: x[:1, None, 1:3],
    lambda x: x.T,
    lambda x: da.transpose(x, (1, 2, 0)),
    lambda x: x.sum(),
    pytest.mark.xfail(lambda x: x.dot(np.arange(x.shape[-1])), reason='cupy.dot(numpy) fails'),
    pytest.mark.xfail(lambda x: x.dot(np.eye(x.shape[-1])), reason='cupy.dot(numpy) fails'),
    pytest.mark.xfail(lambda x: da.tensordot(x, np.ones(x.shape[:2]), axes=[(0, 1), (0, 1)]),
                      reason='cupy.dot(numpy) fails'),
    lambda x: x.sum(axis=0),
    lambda x: x.max(axis=0),
    lambda x: x.sum(axis=(1, 2)),
    lambda x: x.astype(np.complex128),
    lambda x: x.map_blocks(lambda x: x * 2),
    pytest.mark.xfail(lambda x: x.round(1), reason="cupy doesn't support round"),
    lambda x: x.reshape((x.shape[0] * x.shape[1], x.shape[2])),
    lambda x: abs(x),
    lambda x: x > 0.5,
    lambda x: x.rechunk((4, 4, 4)),
    lambda x: x.rechunk((2, 2, 1)),
]

Esempio n. 17
0
    lambda x: x.moment(order=0),
    pytest.param(
        lambda x: x.std(),
        marks=pytest.mark.xfail(
            reason="fixed in https://github.com/pydata/sparse/pull/243"
        ),
    ),
    pytest.param(
        lambda x: x.var(),
        marks=pytest.mark.xfail(
            reason="fixed in https://github.com/pydata/sparse/pull/243"
        ),
    ),
    lambda x: x.dot(np.arange(x.shape[-1])),
    lambda x: x.dot(np.eye(x.shape[-1])),
    lambda x: da.tensordot(x, np.ones(x.shape[:2]), axes=[(0, 1), (0, 1)]),
    lambda x: x.sum(axis=0),
    lambda x: x.max(axis=0),
    lambda x: x.sum(axis=(1, 2)),
    lambda x: x.astype(np.complex128),
    lambda x: x.map_blocks(lambda x: x * 2),
    lambda x: x.round(1),
    lambda x: x.reshape((x.shape[0] * x.shape[1], x.shape[2])),
    lambda x: abs(x),
    lambda x: x > 0.5,
    lambda x: x.rechunk((4, 4, 4)),
    lambda x: x.rechunk((2, 2, 1)),
    lambda x: np.isneginf(x),
    lambda x: np.isposinf(x),
]
Esempio n. 18
0
        data_ends_list = row_info_holder[file_name]["Ends"]
        for data_idx in range(len(data_name_list)):
            data_name = data_name_list[data_idx]

            tmp_data_holder = h5file_holder[file_name][data_name]
            tmp_dask_data_holder = da.from_array(tmp_data_holder[data_ends_list[data_idx][0]:
                                                                 data_ends_list[data_idx][1]]
                                                 , chunks='auto')
            dataset_holder.append(tmp_dask_data_holder)

    # Create dask arrays based on these h5 files
    dataset = da.concatenate(dataset_holder, axis=0)

    # Calculate the correlation matrix.
    num_dim = len(dataset.shape)
    inner_prod_matrix = da.tensordot(dataset, dataset, axes=(list(range(1, num_dim)), list(range(1, num_dim))))

    # Save the distance patch
    name_to_save = address_output + "/distances/patch_{}_{}.npy".format(comm_rank - 1, comm_rank - 1)
    da.to_npy_stack(name_to_save, inner_prod_matrix)

    # comm.Barrier()  # There is no need to synchronize here

    """
    Step Four: Calculate the off-diagonal patch
    """
    # Construct the data for off-diagonal patch
    patch_number = len(job_list[comm_rank - 1]) - 1

    for _local_idx in range(1, patch_number):  # The first patch calculated for each row is the diagonal patch.
Esempio n. 19
0
import dask.array as da
from dask.diagnostics import ProgressBar
from deepjets.samples import make_flat_images

ret = make_flat_images(
    '/coepp/cephfs/mel/edawe/deepjets/events/pythia/images/default2/qcd_j1p0_sj0p30_delphes_jets_pileup_images.h5',
    250,
    300,
    mass_min=50,
    mass_max=110)

images, auxvars, weights = ret

print images
print weights

print auxvars
print auxvars['generator_weights']

print "average"
with ProgressBar():
    avg_image = da.tensordot(images, weights,
                             axes=(0, 0)).compute() / weights.sum()
print avg_image
Esempio n. 20
0
def test_tensordot_more_than_26_dims():
    ndim = 27
    x = np.broadcast_to(1, [2] * ndim)
    dx = da.from_array(x, chunks=-1)
    assert_eq(da.tensordot(dx, dx, ndim), np.array(2**ndim))
Esempio n. 21
0
    def __get_seasonal_means_with_ttest_stats_dask_lazy(
            self,
            data,
            season_to_monthperiod=None,
            start_year=-np.Inf,
            end_year=np.Inf,
            convert_monthly_accumulators_to_daily=False):

        # mask the resulting fields
        epsilon = 1.0e-5
        mask = np.less_equal(np.abs(data[0, :, :] - self.missing_value),
                             epsilon)

        print("data.shape = ", data.shape)

        data_sel, times_sel = data, self.time

        # select the interval of interest

        if convert_monthly_accumulators_to_daily:
            ndays = da.from_array(
                np.array([
                    calendar.monthrange(d.year, d.month)[1] for d in times_sel
                ]), (100, ))
            ndays = da.transpose(da.broadcast_to(
                da.from_array(ndays, ndays.shape),
                data_sel.shape[1:] + ndays.shape),
                                 axes=(2, 0, 1))

            data_sel = data_sel / ndays

        year_month_to_index_arr = defaultdict(list)
        for i, t in enumerate(times_sel):
            year_month_to_index_arr[t.year, t.month].append(i)

        # calculate monthly means
        monthly_data = {}
        for y in range(start_year, end_year + 1):
            for m in range(1, 13):
                aslice = slice(year_month_to_index_arr[y, m][0],
                               year_month_to_index_arr[y, m][-1] + 1)
                print(aslice, data_sel.shape)
                monthly_data[y, m] = data_sel[aslice, :, :].mean(axis=0)

        result = OrderedDict()
        for season, month_period in season_to_monthperiod.items():
            assert isinstance(month_period, MonthPeriod)

            seasonal_means = []
            ndays_per_season = []

            for p in month_period.get_season_periods(start_year=start_year,
                                                     end_year=end_year):
                lmos = da.stack([
                    monthly_data[start.year, start.month]
                    for start in p.range("months")
                ])
                ndays_per_month = np.array([
                    calendar.monthrange(start.year, start.month)[1]
                    for start in p.range("months")
                ])
                ndays_per_month = da.from_array(ndays_per_month,
                                                ndays_per_month.shape)

                print(p)
                print(lmos.shape, ndays_per_month.shape, ndays_per_month.sum())
                seasonal_mean = da.tensordot(
                    lmos, ndays_per_month, axes=([
                        0,
                    ], [
                        0,
                    ])) / ndays_per_month.sum()

                seasonal_means.append(seasonal_mean)
                ndays_per_season.append(ndays_per_month.sum())

            seasonal_means = da.stack(seasonal_means)
            ndays_per_season = np.array(ndays_per_season)
            ndays_per_season = da.from_array(ndays_per_season,
                                             ndays_per_season.shape)

            print(seasonal_means.shape, ndays_per_season.shape)

            assert seasonal_means.shape[0] == ndays_per_season.shape[0]

            clim_mean = da.tensordot(
                seasonal_means, ndays_per_season, axes=([
                    0,
                ], [
                    0,
                ])) / ndays_per_season.sum()

            clim_std = ((seasonal_means -
                         da.broadcast_to(clim_mean, seasonal_means.shape))**2 *
                        ndays_per_season[:, np.newaxis, np.newaxis]).sum(
                            axis=0) / ndays_per_season.sum()

            clim_std = clim_std**0.5

            result[season] = [clim_mean, clim_std, ndays_per_season.shape[0]]

        return result, mask