if not os.path.exists(opt.checkpoints_dir): os.makedirs(opt.checkpoints_dir) logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y/%m/%d %H:%M:%S', \ filename=os.path.join(opt.checkpoints_dir, 'train.log'), level=logging.INFO) logging.info('======================================================') logging.info('weight: %f', opt.weight) print(opt.pretrain_encoder, opt.pretrain_decoder, opt.pretrain_estimater) logging.info('encoder=%s' % opt.pretrain_encoder) logging.info('decoder=%s' % opt.pretrain_decoder) logging.info('estimater=%s' % opt.pretrain_estimater) if __name__ == '__main__': #if not os.path.exists(opt.train_record_dir): # os.system(r"touch{}".format(opt.train_record_dir)) #load data trainset = ICVL_Loader(opt.dataroot, 'train', opt) dataset_size = len(trainset) trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.nThreads) print('#training point clouds = %d' % len(trainset)) testset = ICVL_Loader(opt.dataroot, 'test', opt) testloader = torch.utils.data.DataLoader(testset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.nThreads) print('#testing point clouds = %d' % len(testset)) visualizer = Visualizer(opt)
default=100, help='weight of estimater, while weight of decoder is 1') opt = parser.parse_args() opt.device = torch.device("cuda:%d" % (opt.gpu_id) if torch.cuda.is_available() else "cpu") cuda.select_device(opt.gpu_id) print(opt.pretrain_encoder, opt.pretrain_decoder, opt.pretrain_estimater) if __name__ == '__main__': #if not os.path.exists(opt.train_record_dir): # os.system(r"touch{}".format(opt.train_record_dir)) #load data testset = ICVL_Loader(opt.dataroot, 'test', opt) testloader = torch.utils.data.DataLoader(testset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.nThreads) print('#testing point clouds = %d' % len(testset)) visualizer = Visualizer(opt) # create model, optionally load pre-trained model model = Model(opt) current_en_index = 0 current_es_index = 0 current_de_index = 0 if opt.pretrain_encoder is not None: model.encoder.load_state_dict(torch.load(opt.pretrain_encoder)) current_en_index = int(