Esempio n. 1
0
def main(argv):
    distribution = None
    per = 0.5
    num = 300000
    is_sample = False
    is_type = False
    is_distribution = False
    do_create = True
    try:
        opts, args = getopt.getopt(argv, "hd:t:p:n:c:")
    except getopt.GetoptError:
        show_help_message('command')
        sys.exit(2)
    for opt, arg in opts:
        arg = str(arg).lower()
        if opt == '-h':
            show_help_message('all')
            return
        elif opt == '-t':
            if arg == "sample":
                is_sample = True
                is_type = True
            elif arg == "full":
                is_sample = False
                is_type = True
            else:
                show_help_message('type')
                return
        elif opt == '-d':
            if not is_type:
                show_help_message('noTypeError')
                return
            if arg == "random":
                distribution = Distribution.RANDOM
                is_distribution = True
            elif arg == "exponential":
                distribution = Distribution.EXPONENTIAL
                is_distribution = True
            else:
                show_help_message('distribution')
                return
        elif opt == '-p':
            if not is_type:
                show_help_message('noTypeError')
                return
            if not is_distribution:
                show_help_message('noDistributionError')
                return
            per = float(arg)
            if not 0.1 <= per <= 1.0:
                show_help_message('percent')
                return

        elif opt == '-n':
            if not is_type:
                show_help_message('noTypeError')
                return
            if not is_distribution:
                show_help_message('noDistributionError')
                return
            if is_sample:
                show_help_message('snError')
                return
            num = int(arg)
            if not 10000 <= num <= 1000000:
                show_help_message('number')
                return

        elif opt == '-c':
            if not is_distribution:
                show_help_message('noDistributionError')
                return
            do_create = not (int(arg) == 0)

        else:
            print("Unknown parameters, please use -h for instructions.")
            return

    if not is_type:
        show_help_message('noTypeError')
        return
    if not is_distribution:
        show_help_message('noDistributionError')
        return
    if do_create:
        create_data(distribution, num)
    if is_sample:        
        sample_train(thresholdPool[distribution], useThresholdPool[distribution], distribution, per, filePath[distribution])
    else:
        train_index(thresholdPool[distribution], useThresholdPool[distribution], distribution, filePath[distribution])
Esempio n. 2
0
def create_dataset():
    creator = create_data(image_size=(128, 416),
                          output_csv='data/dataset.csv',
                          output_dir='data/images',
                          formula_file='data/normalized_.txt')
    creator.create()