class Experiment03(object):
    """
    Experiment03 class
    """
    def __init__(self, config_):
        """
        Constructor
        :param config_:
        :return:
        """
        self.config = config_
        self.data_exporter = DataExporter(self.config)
        self.logger = logging.getLogger("cuda_logger")
        self.expt_name = "expt_03"
        self.config['RL_parameters']['experiment'] = self.expt_name

    @staticmethod
    def run_rl_training(config):
        rl_trainer = RunRLTrainingJob(config)
        data = rl_trainer.run()
        return data

    def run(self):
        """
        Run experiment
        """
        num_drivers = np.arange(1000, 6500, 500)
        objectives = ['pickups', 'revenue']
        combinations = list(itertools.product(num_drivers, objectives))

        # Create a pool of processes
        num_processes = mp.cpu_count()
        pool = ProcessPool(nodes=num_processes)

        configs = []
        count = 0
        for comb in combinations:
            self.config['RL_parameters'][
                'experiment'] = self.expt_name + "_" + str(count)
            self.config['RL_parameters'][
                'city_states_filename'] = "city_states.dill"
            self.config['RL_parameters']['num_drivers'] = comb[0]
            self.config['RL_parameters']['num_strategic_drivers'] = comb[0]
            self.config['RL_parameters']['objective'] = comb[1]
            configs.append(deepcopy(self.config))
            count += 1

        self.logger.info("Starting expt_03")

        results = pool.amap(self.run_rl_training, configs).get()
        pool.close()
        pool.join()
        pool.clear()

        self.logger.info("Finished expt_03")

        # Export best episode
        self.data_exporter.export_episode(results, self.expt_name + ".dill")
Esempio n. 2
0
class RunRLTrainingJob(object):
    """
    This class implements a job to run the RL training
    """
    def __init__(self, config_):
        """
        Constructor
        :param config_:
        :return:
        """
        self.config = config_
        self.logger = logging.getLogger("cuda_logger")
        self.data_exporter = DataExporter(self.config)

    def run(self):
        """
        This method executes the job
        :param:
        :return:
        """
        self.logger.info("Starting job: RunRLTrainingJob\n")
        self.logger.info("RL training parameters:")

        pp = pprint.PrettyPrinter(indent=4)
        self.logger.info(pp.pprint(self.config['RL_parameters']))

        # Create RL trainer
        rl_trainer = RLTrainer(self.config)

        # Runs RL episodes
        result = rl_trainer.run()
        best_episode = result[0]
        best_model = result[1]
        training_tracker = result[2]

        # Export best_model
        best_model_filename = self.config['RL_parameters'].get(
            'best_model_filename', False)
        best_episode_filename = self.config['RL_parameters'].get(
            'best_episode_filename', False)
        training_tracker_filename = self.config['RL_parameters'].get(
            'training_tracker_filename', False)

        if best_model_filename:
            self.data_exporter.export_model(best_model, best_model_filename)

        if best_episode_filename:
            self.data_exporter.export_episode(best_episode,
                                              best_episode_filename)

        if training_tracker_filename:
            self.data_exporter.export_training_tracker(
                training_tracker, training_tracker_filename)

        self.logger.info("Finished job: RunRLTrainingJob")

        return best_episode
class Experiment05(object):
    """
    Experiment05 class
    """

    def __init__(self, config_):
        """
        Constructor
        :param config_:
        :return:
        """
        self.config = config_
        self.data_exporter = DataExporter(self.config)
        self.logger = logging.getLogger("cuda_logger")
        self.expt_name = "expt_05"
        self.config['RL_parameters']['experiment'] = self.expt_name

    @staticmethod
    def run_rl_training(config):
        rl_trainer = RunRLTrainingJob(config)
        data = rl_trainer.run()
        return data

    def run(self):
        """
        Run experiment
        """
        num_drivers = self.config['RL_parameters']['num_drivers']
        percent_strategic_drivers = np.arange(0, 1.1, 0.1)
        num_strategic_drivers = [int(x * num_drivers) for x in percent_strategic_drivers]

        # Create a pool of processes
        num_processes = mp.cpu_count()
        pool = ProcessPool(nodes=num_processes)

        configs = []
        count = 0
        for drivers in num_strategic_drivers:
            self.config['RL_parameters']['experiment'] = self.expt_name + "_" + str(count)
            self.config['RL_parameters']['num_strategic_drivers'] = drivers
            configs.append(deepcopy(self.config))
            count += 1

        self.logger.info("Starting expt_05")

        results = pool.amap(self.run_rl_training, configs).get()
        pool.close()
        pool.join()
        pool.clear()

        self.logger.info("Finished expt_05")

        # Export best episode
        self.data_exporter.export_episode(results, self.expt_name + ".dill")
Esempio n. 4
0
class Experiment01(object):
    """
    Experiment01 class
    """

    def __init__(self, config_):
        """
        Constructor
        :param config_:
        :return:
        """
        self.config = config_
        self.data_exporter = DataExporter(self.config)
        self.logger = logging.getLogger("cuda_logger")
        self.expt_name = "expt_01"
        self.config['RL_parameters']['experiment'] = self.expt_name

    @staticmethod
    def run_rl_training(config):
        rl_trainer = RunRLTrainingJob(config)
        data = rl_trainer.run()
        return data

    def run(self):
        """
        Run experiment
        """
        ind_percent = np.arange(0., 1.1, 0.1)
        reb_percent = np.arange(0., 1.1, 0.1)
        ind_percent[0] = 0.01
        reb_percent[0] = 0.01
        combinations = list(itertools.product(ind_percent, reb_percent))
        num_episodes = self.config['RL_parameters']['num_episodes']

        # Create a pool of processes
        num_processes = mp.cpu_count()
        pool = ProcessPool(nodes=num_processes)

        configs = []
        count = 0
        for comb in combinations:
            self.config['RL_parameters']['experiment'] = self.expt_name + "_" + str(count)
            ind_episodes = int(comb[0] * num_episodes)
            reb_episodes = int(comb[1] * num_episodes)
            if (ind_episodes + reb_episodes) < num_episodes:
                self.config['RL_parameters']['ind_episodes'] = ind_episodes
                self.config['RL_parameters']['reb_episodes'] = reb_episodes
                configs.append(deepcopy(self.config))
                count += 1

        self.logger.info("Starting expt_01")

        results = pool.amap(self.run_rl_training, configs).get()
        pool.close()
        pool.join()
        pool.clear()

        self.logger.info("Finished expt_01")

        # Export best episode
        self.data_exporter.export_episode(results, self.expt_name + ".dill")
Esempio n. 5
0
class Experiment06(object):
    """
    Experiment06 class
    """
    def __init__(self, config_):
        """
        Constructor
        :param config_:
        :return:
        """
        self.config = config_
        self.data_exporter = DataExporter(self.config)
        self.logger = logging.getLogger("cuda_logger")
        self.expt_name = "expt_06"
        self.config['RL_parameters']['experiment'] = self.expt_name

    @staticmethod
    def run_rl_training(config):
        rl_trainer = RunRLTrainingJob(config)
        data = rl_trainer.run()
        return data

    def run(self):
        """
        Run experiment
        """
        days = [
            'Sunday_00_', 'Monday_00_', 'Tuesday_00_', 'Wednesday_00_',
            'Thursday_00_', 'Friday_00_', 'Saturday_00_', 'Sunday_01_',
            'Monday_01_', 'Tuesday_01_', 'Wednesday_01_', 'Thursday_01_',
            'Friday_01_', 'Saturday_01_', 'Sunday_02_', 'Monday_02_',
            'Tuesday_02_', 'Wednesday_02_', 'Thursday_02_', 'Friday_02_',
            'Saturday_02_', 'Sunday_03_', 'Monday_03_', 'Tuesday_03_',
            'Wednesday_03_', 'Thursday_03_', 'Friday_03_', 'Saturday_03_'
        ]

        # Create a pool of processes
        num_processes = mp.cpu_count()
        pool = ProcessPool(nodes=num_processes)

        configs = []
        count = 0

        for day in days:
            self.config['RL_parameters'][
                'experiment'] = self.expt_name + "_" + str(count)
            self.config['RL_parameters'][
                'city_states_filename'] = day + 'city_states.dill'
            self.config['RL_parameters'][
                'best_model_filename'] = day + 'model.dill'
            configs.append(deepcopy(self.config))
            count += 1

        self.logger.info("Starting expt_06")

        results = pool.amap(self.run_rl_training, configs).get()
        pool.close()
        pool.join()
        pool.clear()

        self.logger.info("Finished expt_06")

        # Export best episode
        self.data_exporter.export_episode(results, self.expt_name + ".dill")
class Experiment08(object):
    """
    Experiment08 class
    """
    def __init__(self, config_):
        """
        Constructor
        :param config_:
        :return:
        """
        self.config = config_
        self.data_exporter = DataExporter(self.config)
        self.logger = logging.getLogger("cuda_logger")
        self.expt_name = "expt_08"
        self.config['Model_testing']['experiment'] = self.expt_name

    @staticmethod
    def run_rl_testing(config):
        rl_tester = RunRLTestingJob(config)
        data = rl_tester.run()
        return data

    def run(self):
        """
        Run experiment
        """
        days = [
            'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
            'Saturday'
        ]
        weeks_of_month = ['00', '01', '02', '03', '04']
        imbalance_thresholds = [2]
        model_num_drivers = [4000, 5000, 6000, 7000, 8000, 9000, 10000]

        test_combinations = []
        for model_day in days:
            for model_wom in weeks_of_month:
                for model_threshold in imbalance_thresholds:
                    for model_drivers in model_num_drivers:
                        model_args = [
                            model_day, model_wom,
                            str(model_drivers),
                            str(model_threshold)
                        ]
                        model_filename = "_".join(model_args) + "_model.dill"
                        if os.path.isfile(self.config['app']['DATA_DIR'] +
                                          'models/' + model_filename):
                            for test_wom in weeks_of_month:
                                for test_drivers in range(
                                        model_drivers - 3000,
                                        model_drivers + 4000, 1000):
                                    test_file = model_day + '_' + test_wom + '_city_states.dill'
                                    if os.path.isfile(
                                            self.config['app']['DATA_DIR'] +
                                            'city_states/' + test_file):
                                        test_combinations.append({
                                            'model':
                                            model_filename,
                                            'test_dow':
                                            model_day,
                                            'test_wom':
                                            test_wom,
                                            'test_drivers':
                                            test_drivers
                                        })
        self.logger.info("Total test combinations: {}".format(
            len(test_combinations)))

        # Create a pool of processes
        num_processes = mp.cpu_count()
        pool = ProcessPool(nodes=num_processes)

        configs = []
        count = 0

        for comb in test_combinations:
            self.config['Model_testing'][
                'experiment'] = self.expt_name + "_" + str(count)
            self.config['Model_testing']['city_states_filename'] = (
                comb['test_dow'] + '_' + comb['test_wom'] +
                '_city_states.dill')
            self.config['Model_testing']['model_filename'] = comb['model']
            self.config['RL_parameters']['num_drivers'] = comb['test_drivers']
            self.config['RL_parameters']['num_strategic_drivers'] = comb[
                'test_drivers']

            configs.append(deepcopy(self.config))
            count += 1

        self.logger.info("Starting expt_08")

        results = pool.amap(self.run_rl_testing, configs).get()
        pool.close()
        pool.join()
        pool.clear()

        self.logger.info("Finished expt_08")

        # Export best episode
        self.data_exporter.export_episode(results, self.expt_name + ".dill")
class Experiment04(object):
    """
    Experiment04 class
    """
    def __init__(self, config_):
        """
        Constructor
        :param config_:
        :return:
        """
        self.config = config_
        self.data_exporter = DataExporter(self.config)
        self.logger = logging.getLogger("cuda_logger")
        self.expt_name = "expt_04"
        self.config['RL_parameters']['experiment'] = self.expt_name

    @staticmethod
    def run_rl_training(config):
        rl_trainer = RunRLTrainingJob(config)
        try:
            data = rl_trainer.run()
        except BaseException:
            print config
            raise ValueError
        return data

    def run(self):
        """
        Run experiment
        """
        num_drivers = np.arange(1000, 6500, 500)
        thresholds = np.arange(5, 55, 5)
        thresholds = np.insert(thresholds, 0, 2)
        combinations = list(itertools.product(num_drivers, thresholds))

        # Create a pool of processes
        num_processes = mp.cpu_count()
        self.logger.info("Processes: {}".format(num_processes))
        pool = ProcessPool(nodes=num_processes)

        configs = []
        count = 0
        for comb in combinations:
            self.config['RL_parameters'][
                'experiment'] = self.expt_name + "_" + str(count)
            self.config['RL_parameters']['num_drivers'] = comb[0]
            self.config['RL_parameters']['imbalance_threshold'] = comb[1]
            configs.append(deepcopy(self.config))
            count += 1

        self.logger.info("Starting expt_04")

        results = pool.amap(self.run_rl_training, configs).get()
        pool.close()
        pool.join()
        pool.clear()

        self.logger.info("Finished expt_04")

        # Export best episode
        self.data_exporter.export_episode(results, self.expt_name + ".dill")