def test_nearest_node_not_found():

    # These are three points with no nodes in a 100 meter vicinity.
    vicinity = 100
    nodes_not_found = [(42.39801801801802, -72.50198198198198),
                       (42.425045045045046, -72.47495495495495),
                       (42.605225225225226, -72.29477477477477)]

    for point in nodes_not_found:
        lat, lon = point
        node = nearest_node(credentials, lat=lat, lon=lon, meters=vicinity)
        assert (node is None)
Esempio n. 2
0
def time_nearest_node_not_found():

    nodes_not_found = [(42.39801801801802, -72.50198198198198),
                       (42.425045045045046, -72.47495495495495),
                       (42.605225225225226, -72.29477477477477)]

    for point in nodes_not_found:

        lat, lon = point

        start = time.time()
        nodes = nearest_node(credentials, lat=lat, lon=lon)
        end = time.time()
        print("searching for", point, "took %f sec" % (end - start))
def test_nearest_node():
    """ Test if a nearest node can be found """
    sample_lat, sample_lon = 42.299944, -72.588062
    nn = nearest_node(credentials, lat=sample_lat, lon=sample_lon, meters=100)

    # make sure we get the right return type
    assert (type(nn) == tuple)

    # make sure each node is a row with (id, lat, lon)
    assert (len(nn) == 3)

    # make sure we are within .1 degree of latitude and longitude
    assert (abs(float(nn[1]) - sample_lat) < .1
            and abs(float(nn[2]) - sample_lon) < .1)
Esempio n. 4
0
def time_nearest_node_queries():

    amherst = ('amherst', 42.375582, -72.519629)
    boston = ('boston', 42.356417, -71.067728)
    shutesbury = ('shutesbury', 42.454855, -72.410792)

    # Test different towns (sparse, medium, dense)
    for point in [shutesbury, amherst, boston]:

        # Unpack values
        name, lat, lon = point

        start = time.time()
        nodes = nearest_node(credentials, lat=lat, lon=lon)
        end = time.time()
        print("%s: nearest node found in %f sec" % (name, end - start))
Esempio n. 5
0
def time_random_nearest_nodes():

    x_dim = 100
    y_dim = 50
    count = 0

    for i in range(x_dim):
        for j in range(y_dim):

            lon = -73.2 + (-71.5 - -73.2) * 1.0 * i /x_dim
            lat = 42.1 + (42.6 - 42.1) * 1.0 * j /y_dim

            count += 1
            start = time.time()
            nodes = nearest_node(credentials, lat=lat, lon=lon)
            end = time.time()
            print("%i, %f, %f, %f" % (count, lat, lon, end - start))
def optimize(A, B, preferences, debug=False):
    """
    Main driver of the graph optimization.

    @input
    A: tuple of floats - (lat, lon)
    B: tuple of floats - (lat, lon)
    preferences: tuple of floats -
                (flatness_val, bicycle_val, distance_val,
                 motorway_val, highway_val, residential_val)

    @return
    route - an ordered list of nodes [(lat, lon), (lat, lon)] from A to B
    """
    # Unpack values
    A_lat, A_lon = A
    B_lat, B_lon = B

    # Validate input parameters
    if not valid_point(A_lat, A_lon):
        print("Invalid start point", A)
        return []
    if not valid_point(B_lat, B_lon):
        print("Invalid end point", B)
        return []
    if any([preference < 0 or preference > 100 for preference in preferences]):
        print("Invalid preferences", preferences)
        return []

    AB_dist = dist_2d(A, B)
    if AB_dist > MAX_DISTANCE:
        print("Start and end points are further than maximum allowed distance",
              AB_dist, "meters", MAX_DISTANCE, "allowed.")
        return []

    # Find nearest nodes in our database to A and B
    s = nearest_node(credentials, lat=A_lat, lon=A_lon)
    if s is None:
        print("No node found near", A)
        return []
    else:
        s_id, s_lat, s_lon = s

    t = nearest_node(credentials, lat=B_lat, lon=B_lon)
    if t is None:
        print("No node found near", B)
        return []
    else:
        t_id, t_lat, t_lon = t

    # Calculate midpoint
    m_lat, m_lon = midpoint((s_lat, s_lon), (t_lat, t_lon))

    # Calculate search radius
    r = search_radius((s_lat, s_lon), (t_lat, t_lon))

    # Get data from search radius
    edges_to_search = edges_within_radius(credentials,
                                          lat=m_lat,
                                          lon=m_lon,
                                          radius=r)

    # Print debug messages, if specified.
    if debug:
        print("Graph will be created with ", len(edges_to_search), "edges")
        print("radius:", r)
        print("midpoint:", m_lat, m_lon)
        print("s:", s)
        print("t:", t)
        print("AB_dist:", AB_dist)
        print("st_dist:", dist_2d((s_lat, s_lon), (t_lat, t_lon)))
        #print("sample edges:", edges_to_search[:10])
        print("preferences:", preferences)

    # TODO: build the graph g, call g.dijkstra_path, and return the shortest path
    g = Graph()

    for way in edges_to_search:
        start_node_id = way[0]
        if (g.nodes.get(start_node_id) == None):
            start_node_lat = way[1]
            start_node_lon = way[2]
            g.add_node(Node(
                start_node_id,
                (start_node_lat, start_node_lon)))  #add start node to graph
        end_node_id = way[3]
        if (g.nodes.get(end_node_id) == None):
            end_node_lat = way[4]
            end_node_lon = way[5]
            g.add_node(
                Node(end_node_id,
                     (end_node_lat, end_node_lon
                      )))  #add end node to graph, for closest_node() method
        distance = way[6]
        highway = way[7]
        bicycle = way[8]
        incline = way[9]
        g.add_edge(start_node_id, end_node_id, distance, highway, bicycle,
                   incline, preferences)

    shortest_path = g.dijkstra_path(s_id, t_id)

    if debug:
        print("shortest_path found:")
        print(shortest_path)

    return shortest_path