Esempio n. 1
0
def train(M, FLAGS, model_name=None):
    print("train called")
    #nn = importlib.import_module(".{}".format(FLAGS.nn), package='networks')
    data = get_data(FLAGS.src, FLAGS)
    print(f"The number of train data is         {data.train_num}")
    print(f"The number of test data is          {data.test_num}")
    print(f"The number of validation data is    {data.val_num}")
    images, labels = data.train.next_batch(128)
    print(f"The shape of the batch images is    {images.shape}")
    print(f"The shape of the batch labels is    {labels.shape}")
    print(np.max(images))
    print(np.min(images))

    # This code shows data shape and plots it.
    for i in range(1):
        first_data = images[i]
        print(first_data.shape)
        #trans_data = np.transpose(first_data, (1, 2, 0)).astype(np.float32)
        # trans_data = np.tile(np.transpose(first_data, (1, 2, 0)).astype(np.float32), (1, 1, 3))
        #print(trans_data.shape)
        #first_data = np.tile(first_data, (1, 1, 3))
        plt.imshow(first_data)
        plt.show()
        print(f"The label of the image is           {np.argmax(labels[i])}")
    config.label_type = 'vec'
    config.label_order = 'freq_first'

# cuda
use_cuda = torch.cuda.is_available() and len(opt.gpus) > 0

if use_cuda:
    torch.cuda.set_device(opt.gpus[0])
    torch.cuda.manual_seed(opt.seed)
print(use_cuda)

# data
print('loading data...\n')
start_time = time.time()
item_train, label_train, \
    item_test, label_test = dataset.get_data(config)
'''
trainset = dataset.Dataset(item_train, label_train, config.label_set_size, input_type = config.module_type) 
validset = dataset.Dataset(item_test, label_test, config.label_set_size, input_type = config.module_type) 
testset = dataset.Dataset(item_test, label_test, config.label_set_size, input_type = config.module_type)
'''
trainloader = dataloader.wgan_data_loader(item_train,
                                          label_train,
                                          config.batch_size,
                                          config,
                                          shuffle=True,
                                          balance=True)
validloader = dataloader.wgan_data_loader(item_test,
                                          label_test,
                                          config.batch_size,
                                          config,
Esempio n. 3
0
  # [0, 1, 0, 1, 1]
  """

    result = tf.zeros(depth)

    for scalar in input:
        result += tf.one_hot(scalar, depth)

    return result


""" Main stub """

print(colors.BOLD, 'Loading dataset...', colors.ENDC)

data_set, labels = data.get_data()

print(colors.BOLD, 'Transforming data...', colors.ENDC, end='')

data_set = list(map(partial(transform_input_one_hot, depth=__dim__), data_set))
data_set = tf.stack(data_set)
data_set = tf.map_fn(lambda t: t / tf.reduce_max(t), data_set)

train = data_set[:800]
validation = data_set[800:]

tf.InteractiveSession()

train_np = train.eval()
validation_np = validation.eval()