def train(): # 加载训练集和验证集 train_loader = load_dataset(opt_train.train_dir, opt_train.train_size, opt_train, shuffled=True) valid_loader = load_dataset(opt_train.valid_dir, opt_train.valid_size, opt_train, shuffled=False) # 初始化模型并训练 n2n = Noise2Noise(opt_train, trainable=True) n2n.train(train_loader, valid_loader)
def test(): # 初始化模型,进行测试 n2n = Noise2Noise(opt_test, trainable=False) opt_test.redux = False test_loader = load_dataset(opt_test.data, 3, opt_test, shuffled=False, single=True) #修改0 n2n.load_model(opt_test.load_ckpt) #加载预训练模型 n2n.test(test_loader)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu if args.pretrained: model = tf.keras.models.load_model(args.pretrained, compile=False) else: # Choose encoder model model = model_factory.construct_model_from_args(args) if args.simclr: model = model_utils.remove_layers(model, CONTRASTIVE_OUTPUT) # Conrec Dataset (unsupervised) train, test, num_examples = load_dataset( args.dataset, args.data_path, test_split=args.test_split if not args.no_test_data else None, train_split=args.train_split, cache=args.cache, threads=args.threads, docker_down=args.docker_download) conrec_train, conrec_test = (transform.conrec_dataset( ds, args.batch_size, height=args.height, width=args.width, implementation=args.aug_impl, channels=args.channels, color_jitter_strength=args.color_jitter_strength, do_shuffle=s, buffer_multiplier=args.shuffle_buffer_multiplier, use_blur=args.use_blur) if ds is not None else None
def input_fn(): return load_dataset(config, config.train.batch_size, epochs=-1, shuffle=config.train.shuffle)
def input_fn(): d = load_dataset(config, 1, epochs=1, shuffle=args.shuffle) d = d.take(args.samples) return d