Esempio n. 1
0
 def test_stay(self):
     self.env = Env(
         balance=250000,
         FX_DATA_FILE='../data/raw/FX_Demo/sample_USD_JPY_S5.pickle')
     stay_mount = self.env.step(action='stay', mount=1)
     assert stay_mount == {'success': 250000.0}
     assert self.env.stock_balance == 0
     assert self.env.balance == 250000
Esempio n. 2
0
 def test_buy(self):
     self.env = Env(
         balance=250000,
         FX_DATA_FILE='../data/raw/FX_Demo/sample_USD_JPY_S5.pickle')
     buy_mount = self.env.step(action='buy', mount=1)
     assert buy_mount == {'success': 249999.987}
     assert self.env.stock_balance == 1
     assert self.env.balance == 249888.668
Esempio n. 3
0
 def test_reset(self):
     self.env = Env(
         balance=250000,
         FX_DATA_FILE='../data/raw/FX_Demo/sample_USD_JPY_S5.pickle')
     self.env.step(action='buy', mount=1)
     self.env.step(action='sell', mount=1)
     self.env.reset()
     assert self.env.stock_balance == 0
     assert self.env.balance == 250000
Esempio n. 4
0
 def test_sell(self):
     self.env = Env(
         balance=250000,
         FX_DATA_FILE='../data/raw/FX_Demo/sample_USD_JPY_S5.pickle')
     sell_mount = self.env.step(action='sell', mount=1)
     assert sell_mount == {'fail': 0}
     self.env.step(action='buy', mount=1)
     sell_mount = self.env.step(action='sell', mount=1)
     assert sell_mount == {'success': 249999.98500000002}
     assert self.env.stock_balance == 0
     assert self.env.balance == 249999.98500000002
Esempio n. 5
0
 def test_evaluate(self):
     self.env = Env(
         balance=250000,
         FX_DATA_FILE='../data/raw/FX_Demo/sample_USD_JPY_S5.pickle')
     self.agent = Agent()
     self.agent.model.compile(optimizer=Adam(), loss="mse")
     state = (self.env.balance, self.env.stock_balance)
     y = self.agent.evaluate(state=state)
     assert y.shape == (3, )
     assert any(y) is True
 def test_train(self):
     env = Env(balance=250000,
               FX_DATA_FILE='../data/raw/FX_Demo/sample_USD_JPY_S5.pickle')
     agent = Agent(input_data_shape=(10, ))
     mount_agent = Agent(actions=10, input_data_shape=(10, ))
     print(len(env.fx_time_data_buy))
     trainer = Trainer_priority(env,
                                agent,
                                mount_agent,
                                data_end_index=len(env.fx_time_data_buy) -
                                2)
     trainer.train()
Esempio n. 7
0
 def test_act(self):
     self.env = Env(
         balance=250000,
         FX_DATA_FILE='../data/raw/FX_Demo/sample_USD_JPY_S5.pickle')
     self.agent = Agent()
     self.agent.model.compile(optimizer=Adam(), loss="mse")
     state = (self.env.balance, self.env.stock_balance)
     action = self.agent.act(state, epsilon=0.1)
     action_state = False
     if action == 0 or action == 1 or action == 2:
         action_state = True
     assert action_state is True
Esempio n. 8
0
def main():
    env = Env()

    play_pipe, predict_pipe = Pipe()
    train_pipe1, train_pipe2 = Pipe()

    is_training = Value("b", True)

    manager = DQNManager(env.state_n, env.action_n, train_pipe1, predict_pipe,
                         is_training)
    controller = AIControl(env, train_pipe2, play_pipe, is_training)
    manager.start()
    controller.control_start()
    manager.join()
Esempio n. 9
0
def main():

    parser = argparse.ArgumentParser(
        description='Execute train reinforcement learning.')
    parser.add_argument(
        '--dataset_name',
        type=str,
        default="../data/raw/FX_Demo/sample10000_USD_JPY_S5.pickle",
        help='an integer for the accumulator')

    args = parser.parse_args()
    print(args.dataset_name)
    env = Env(balance=250000, FX_DATA_FILE=args.dataset_name)
    agent = Agent(input_data_shape=(10, ))
    mount_agent = Agent(actions=10, input_data_shape=(10, ))
    trainer = Trainer(env,
                      agent,
                      mount_agent,
                      Adam(lr=1e-6),
                      data_end_index=len(env.fx_time_data_buy) - 2)
    trainer.train()
Esempio n. 10
0
def main():
    env = Env()
    controller = AIControl(env)
    controller.control_start()
Esempio n. 11
0
class TestEnv(TestCase):
    def test_sell(self):
        self.env = Env(
            balance=250000,
            FX_DATA_FILE='../data/raw/FX_Demo/sample_USD_JPY_S5.pickle')
        sell_mount = self.env.step(action='sell', mount=1)
        assert sell_mount == {'fail': 0}
        self.env.step(action='buy', mount=1)
        sell_mount = self.env.step(action='sell', mount=1)
        assert sell_mount == {'success': 249999.98500000002}
        assert self.env.stock_balance == 0
        assert self.env.balance == 249999.98500000002

    def test_buy(self):
        self.env = Env(
            balance=250000,
            FX_DATA_FILE='../data/raw/FX_Demo/sample_USD_JPY_S5.pickle')
        buy_mount = self.env.step(action='buy', mount=1)
        assert buy_mount == {'success': 249999.987}
        assert self.env.stock_balance == 1
        assert self.env.balance == 249888.668

    def test_stay(self):
        self.env = Env(
            balance=250000,
            FX_DATA_FILE='../data/raw/FX_Demo/sample_USD_JPY_S5.pickle')
        stay_mount = self.env.step(action='stay', mount=1)
        assert stay_mount == {'success': 250000.0}
        assert self.env.stock_balance == 0
        assert self.env.balance == 250000

    def test_reset(self):
        self.env = Env(
            balance=250000,
            FX_DATA_FILE='../data/raw/FX_Demo/sample_USD_JPY_S5.pickle')
        self.env.step(action='buy', mount=1)
        self.env.step(action='sell', mount=1)
        self.env.reset()
        assert self.env.stock_balance == 0
        assert self.env.balance == 250000
Esempio n. 12
0
        else:
            q_value = self.model.predict(history)
            return np.argmax(q_value[0])

    def load_model(self, filename):
        self.model.load_weights(filename)


def pre_processing(observe):
    processed_observe = np.uint8(
        resize(rgb2gray(observe), (84, 84), mode='constant') * 255)
    return processed_observe


if __name__ == "__main__":
    env = Env()
    agent = TestAgent(action_size=6, env=env)
    agent.load_model("./save_model/supermario_per.h5")

    for e in range(EPISODES):
        done = False
        max_x = 0
        now_x = 0
        hold_frame = 0
        before_max_x = 200

        start_position = 500
        step, score = 0, 0
        observe = env.reset(start_position=start_position)

        state = pre_processing(observe)