Esempio n. 1
0
 def setUp(self):
     self.training, self.validation, self.testing = load_samples(
         'r_music', 0)
     topology = create_network_from_topology([2, 2])
     self.sga = SimpleGeneticAlgorithm(100, MaxGenerationsCriterion(200),
                                       topology,
                                       SelectionOperatorTournament(5),
                                       MutationOperatorGaussian(0.05),
                                       CrossoverOperatorArithmetic(), 0.01,
                                       0.5)
Esempio n. 2
0
    def __init__(self,
                 data_set_name,
                 metric=RootMeanSquaredError,
                 models=_MODELS):
        """Initializes benchmark environment."""

        self.data_set_name = data_set_name
        # Creates file name as combination of data set name and and date.
        self.file_name = self.data_set_name + "__" + _now.strftime(
            "%Y_%m_%d__%H_%M_%S")
        # Loads samples into object.
        self.samples = [
            load_samples(data_set_name, index) for index in range(30)
        ]
        self.metric = metric
        self.models = models
        # If data set is classification problem, remove regression models. Else, vice versa.
        if is_classification(self.samples[0][0]):
            if 'svr' in self.models.keys():
                del self.models['svr']
            if 'mlpr' in self.models.keys():
                del self.models['mlpr']
            if 'rfr' in self.models.keys():
                del self.models['rfr']
        else:
            if 'svc' in self.models.keys():
                del self.models['svc']
            if 'mlpc' in self.models.keys():
                del self.models['mlpc']
            if 'rfc' in self.models.keys():
                del self.models['rfc']
        # Create results dictionary with models under study.
        self.results = {
            k: [None for i in self.samples]
            for k in self.models.keys()
        }
        # Serialize benchmark environment.
        benchmark_to_pickle(self)
 def setUp(self):
     self.training, self.validation, self.testing = load_samples(
         'c_cancer', 0)
 def setUp(self):
     self.training, self.validation, self.testing = load_samples('c_cancer', 0)
     self.neat = Neat(100, MaxGenerationsCriterion(200),
                      4, 1, 1, 0.1, 0.1, 0.1, 0.1, 0.5, 0.01)
Esempio n. 5
0
 def setUp(self):
     base_learner = SemanticLearningMachine(50, MaxGenerationsCriterion(10),
                                            2, 'optimized', 10, Mutation2())
     self.ensemble_learner = Ensemble(base_learner, 50)
     self.training, self.validation, self.testing = load_samples(
         'r_concrete', 0)