Esempio n. 1
0
    def load_image(self, collection, episode_id, action_id, suffix):
        image = Loader.get_image(collection, episode_id, action_id, suffix, as_float=True)
        draw_around_box(image, box=Config.box)

        image.mat = cv2.resize(image.mat, (self.size_input[0] // self.size_memory_scale, self.size_input[1] // self.size_memory_scale))
        image.pixel_size /= self.size_memory_scale
        return image
    def test(self, collection, episode_id):
        grasp = (Loader.get_image(collection, episode_id, 0, 'ed-v').mat /
                 255).astype(np.uint8)
        place = (Loader.get_image(collection, episode_id, 1, 'ed-v').mat /
                 255).astype(np.uint8)
        goal = (Loader.get_image(collection, episode_id, 0, 'ed-goal').mat /
                255).astype(np.uint8)

        grasp_c = cv2.cvtColor(grasp, cv2.COLOR_GRAY2RGB)
        goal_c = cv2.cvtColor(goal, cv2.COLOR_GRAY2RGB)

        # Difference
        diff = cv2.absdiff(place, goal)
        diff[:80, :] = 0
        diff[-80:, :] = 0
        diff[:, :80] = 0
        diff[:, -80:] = 0

        # Find contours
        ret, thresh = cv2.threshold(diff, 20, 255, 0)
        contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE,
                                               cv2.CHAIN_APPROX_NONE)
        print('Number contours: ', len(contours))

        cv2.drawContours(goal_c, contours, -1, (255, 0, 0))

        # Bounding rect of largest area
        c = max(contours, key=cv2.contourArea)
        x, y, w, h = cv2.boundingRect(c)
        cv2.rectangle(goal_c, (x, y), (x + w, y + h), (0, 255, 0), 2)

        # Template matching
        template = goal[y:y + h, x:x + w]
        res = cv2.matchTemplate(grasp, template, cv2.TM_CCOEFF)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

        top_left = max_loc
        bottom_right = (top_left[0] + w, top_left[1] + h)

        cv2.rectangle(grasp_c, top_left, bottom_right, (0, 0, 255), 1)

        cv2.imshow('grasp', grasp_c)
        cv2.imshow('goal', goal_c)
        cv2.waitKey(2000)
Esempio n. 3
0
def api_image(collection_name: str, episode_id: str, action_id: str,
              suffix: str):
    def send_image(image):
        _, image_encoded = cv2.imencode('.jpg', image)
        return flask.send_file(io.BytesIO(image_encoded),
                               mimetype='image/jpeg')

    def send_empty_image():
        empty = np.zeros((480, 752, 1))
        cv2.putText(empty,
                    '?', (310, 300),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    6,
                    100,
                    thickness=6)
        return send_image(empty)

    if flask.request.values.get('pose'):
        action = Action(data=json.loads(flask.request.values.get('pose')))
        image = Loader.get_image(collection_name,
                                 episode_id,
                                 int(action_id),
                                 suffix,
                                 images=action.images)
    else:
        try:
            action, image = Loader.get_action(collection_name, episode_id,
                                              int(action_id), suffix)
        except Exception:
            app.logger.warn('Could not find image:', collection_name,
                            episode_id, action_id, suffix)
            return send_empty_image()

    if suffix not in action.images.keys():
        app.logger.warn(
            f'Could not find suffix {collection_name}-{episode_id}-{action_id}-{suffix}'
        )
        return send_empty_image()

    draw_pose(image, action.pose, convert_to_rgb=True)
    # draw_pose(image, action.pose, convert_to_rgb=True, reference_pose=action.images[suffix]['pose'])

    if flask.request.values.get('box', default=0, type=int):
        draw_around_box(image, box=Config.box, draw_lines=True)

    return send_image(image.mat / 255)
Esempio n. 4
0
def api_image(episode_id):
    def send_image(image):
        _, image_encoded = cv2.imencode('.jpg', image)
        return flask.send_file(io.BytesIO(image_encoded),
                               mimetype='image/jpeg')

    def send_empty_image():
        empty = np.zeros((480, 752, 1))
        cv2.putText(empty,
                    '?', (310, 300),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    6,
                    100,
                    thickness=6)
        return send_image(empty)

    database_name = flask.request.values.get('database')
    suffix = flask.request.values.get('suffix')

    if flask.request.values.get('pose'):
        action = Action(data=json.loads(flask.request.values.get('pose')))
        image = Loader.get_image(database_name,
                                 episode_id,
                                 suffix,
                                 images=action.images)
    else:
        action, image = Loader.get_action(database_name, episode_id, suffix)

    if not action or suffix not in action.images.keys() or not image:
        return send_empty_image()

    draw_pose(image,
              action.pose,
              convert_to_rgb=True,
              reference_pose=action.images['ed-v']['pose'])

    if int(flask.request.values.get('box', default=0)):
        draw_around_box(image, box=Config.box, draw_lines=True)

    return send_image(image.mat / 255)
Esempio n. 5
0
    def manipulate(self) -> None:
        current_bin_episode = None
        goal_images = None

        for epoch in Config.epochs:
            while self.history.total() < epoch.number_episodes:
                current_episode = Episode()
                current_bin_episode = current_bin_episode if current_bin_episode else current_episode.id
                current_selection_method = self.get_current_selection_method(
                    epoch)

                start = time.time()

                place_action_in_other_bin = Config.release_in_other_bin and not Config.release_during_grasp_action
                place_bin = Frames.get_next_bin(
                    self.current_bin
                ) if place_action_in_other_bin else self.current_bin

                if (not Config.predict_images) or self.agent.reinfer_next_time:
                    self.robot.recover_from_errors()

                    if not place_action_in_other_bin or Config.take_after_images:
                        self.robot.move_joints(
                            Frames.bin_joint_values[self.current_bin], self.md)

                    b, c = random.choice(
                        Config.overview_image_angles
                    ) if Config.lateral_overview_image else 0, 0
                    camera_frame_overview = Frames.get_camera_frame(
                        self.current_bin, b=b, c=c)
                    if not Frames.is_camera_frame_safe(camera_frame_overview):
                        continue

                    if place_action_in_other_bin:
                        self.robot.move_cartesian(
                            Frames.camera,
                            Frames.get_camera_frame(place_bin, b=b, c=c),
                            self.md)
                    elif Config.take_goal_images:
                        self.robot.move_cartesian(Frames.camera,
                                                  camera_frame_overview,
                                                  self.md)

                    if Config.take_goal_images:
                        new_goal_images = self.take_goal_images(
                            current_bin=place_bin,
                            current_goal_images=goal_images)
                        goal_images = new_goal_images if new_goal_images else goal_images

                    elif Config.use_goal_images:
                        attr = random.choice(
                            GoalDatabase.get(Config.goal_images_dataset))
                        goal_images = [
                            Loader.get_image(attr[0], attr[1], attr[2], s)
                            for s in attr[3]
                        ]

                    if place_action_in_other_bin:
                        place_image_frame = self.robot.current_pose(
                            Frames.camera)
                        place_images = self.take_images(
                            image_frame=place_image_frame,
                            current_bin=place_bin)

                    if Config.mode is Mode.Measure or Config.lateral_overview_image:
                        self.robot.move_cartesian(Frames.camera,
                                                  camera_frame_overview,
                                                  self.md)

                    image_frame = self.robot.current_pose(Frames.camera)
                    images = self.take_images(image_frame=image_frame)

                    if not Frames.is_gripper_frame_safe(
                            self.robot.current_pose(Frames.gripper)):
                        logger.info('Image frame not safe!')
                        self.robot.recover_from_errors()
                        continue

                input_images = self.get_input_images(images)
                input_place_images = self.get_input_images(
                    place_images) if place_action_in_other_bin else None
                input_goal_images = None

                if Config.use_goal_images:
                    if isinstance(goal_images, list) and isinstance(
                            goal_images[0], list):
                        goal_images_single = goal_images.pop(0)
                    else:
                        goal_images_single = goal_images

                    input_goal_images = self.get_input_images(
                        goal_images_single)

                actions = self.agent.infer(
                    input_images,
                    current_selection_method,
                    goal_images=input_goal_images,
                    place_images=input_place_images,
                )

                for action_id, action in enumerate(actions):
                    logger.info(
                        f'Action ({action_id+1}/{len(actions)}): {action}')

                for action_id, action in enumerate(actions):
                    action.images = {}
                    action.save = True
                    action.bin = self.current_bin
                    action.bin_episode = current_bin_episode

                    current_action_place_in_other_bin = place_action_in_other_bin and action.type == 'place'
                    current_image_pose = place_image_frame if current_action_place_in_other_bin else image_frame
                    current_bin = place_bin if current_action_place_in_other_bin else self.current_bin

                    if Config.mode is Mode.Measure:
                        before_images = place_images if current_action_place_in_other_bin else images
                        self.saver.save_image(before_images,
                                              current_episode.id,
                                              action_id,
                                              'v',
                                              action=action)

                        if Config.use_goal_images:
                            self.saver.save_image(goal_images_single,
                                                  current_episode.id,
                                                  action_id,
                                                  'goal',
                                                  action=action)

                    self.saver.save_action_plan(action, current_episode.id)

                    logger.info(
                        f'Executing action: {action_id} at time {time.time() - self.overall_start:0.1f}'
                    )

                    if Config.set_zero_reward:
                        action.safe = -1

                    execute_action = True

                    if action.type == 'bin_empty':
                        action.save = False
                        execute_action = False
                    elif action.type == 'new_image':
                        action.save = False
                        execute_action = False
                        self.agent.reinfer_next_time = True

                    if action.safe <= 0:
                        execute_action = False
                        action.collision = True

                        # Set actions after this action to unsafe
                        for a in actions[action_id + 1:]:
                            a.safe = action.safe

                        reason = 'not within box' if action.safe == -1 else 'not a number'
                        logger.warning(
                            f'Action (type={action.type}) is {reason} (safe={action.safe}).'
                        )

                        if action.safe == 0 and action.type in [
                                'grasp', 'shift'
                        ]:
                            logger.warning(f'Episode is not saved.')
                            current_episode.save = False
                            break

                        if action.type == 'place' and action_id > 0:
                            prior_action = actions[action_id - 1]

                            if prior_action.type == 'grasp' and prior_action.reward > 0:
                                central_pose = RobotPose(
                                    affine=Affine(z=-0.28), d=action.pose.d)

                                action_frame = Frames.get_action_pose(
                                    action_pose=central_pose,
                                    image_pose=current_image_pose)
                                self.place(current_episode, action_id, action,
                                           action_frame, current_image_pose)

                    # Dont place if grasp was not successful
                    if action.type == 'place' and action_id > 0:
                        prior_action = actions[action_id - 1]

                        if prior_action.type == 'grasp' and (
                                prior_action.reward == 0
                                or prior_action.safe < 1):
                            execute_action = False

                    if Config.take_lateral_images and action.save and Config.mode is Mode.Measure:
                        md_lateral = MotionData().with_dynamics(1.0)

                        for b, c in Config.lateral_images_angles:
                            lateral_frame = Frames.get_camera_frame(
                                current_bin,
                                a=action.pose.a,
                                b=b,
                                c=c,
                                reference_pose=image_frame)

                            if not Frames.is_camera_frame_safe(
                                    lateral_frame) or (b == 0.0 and c == 0.0):
                                continue

                            lateral_move_succss = self.robot.move_cartesian(
                                Frames.camera, lateral_frame,
                                md_lateral)  # Remove a for global b, c pose
                            if lateral_move_succss:
                                self.saver.save_image(
                                    self.take_images(current_bin=current_bin),
                                    current_episode.id,
                                    action_id,
                                    f'lateral_b{b:0.3f}_c{c:0.3f}'.replace(
                                        '.', '_'),
                                    action=action)

                    if execute_action:
                        action_frame = Frames.get_action_pose(
                            action_pose=action.pose,
                            image_pose=current_image_pose)

                        if Config.mode is Mode.Measure and Config.take_direct_images:
                            self.robot.move_cartesian(
                                Frames.camera,
                                Affine(z=0.308) * Affine(b=0.0, c=0.0) *
                                action_frame)
                            self.saver.save_image(
                                self.take_images(current_bin=current_bin),
                                current_episode.id,
                                action_id,
                                'direct',
                                action=action)

                        if action.type == 'grasp':
                            self.grasp(current_episode, action_id, action,
                                       action_frame, current_image_pose)

                            if Config.use_goal_images and self.last_after_images and not place_action_in_other_bin:  # Next action is Place
                                place_action_id = action_id + 1
                                actions[
                                    place_action_id].pose.d = self.gripper.width(
                                    )  # Use current gripper width for safety analysis
                                self.agent.converter.calculate_pose(
                                    actions[place_action_id],
                                    self.last_after_images)

                        elif action.type == 'shift':
                            old_reward_around_action = 0.0
                            self.shift(current_episode, action_id, action,
                                       action_frame, current_image_pose)
                            new_reward_around_action = 0.0

                            action.reward = new_reward_around_action - old_reward_around_action

                        elif action.type == 'place':
                            self.place(current_episode,
                                       action_id,
                                       action,
                                       action_frame,
                                       current_image_pose,
                                       place_bin=place_bin)
                            action.reward = actions[action_id - 1].reward

                    else:
                        if Config.take_after_images:
                            self.robot.move_cartesian(Frames.camera,
                                                      current_image_pose,
                                                      self.md)
                            self.saver.save_image(
                                self.take_images(current_bin=current_bin),
                                current_episode.id,
                                action_id,
                                'after',
                                action=action)

                    action.execution_time = time.time() - start
                    logger.info(
                        f'Time for action: {action.execution_time:0.3f} [s]')

                    if action.save:
                        current_episode.actions.append(action)
                        self.history.append(current_episode)
                    else:
                        break

                    logger.info(
                        f'Episodes (reward / done / total): {self.history.total_reward(action_type="grasp")} / {self.history.total()} / {sum(e.number_episodes for e in Config.epochs)}'
                    )
                    logger.info(
                        f'Last success: {self.history.failed_grasps_since_last_success_in_bin(self.current_bin)} cycles ago.'
                    )

                    # history.save_grasp_rate_prediction_step_evaluation(Config.evaluation_path)

                # Switch bin
                should_change_bin_for_evaluation = (
                    Config.mode is Mode.Evaluate
                    and self.history.successful_grasps_in_bin(self.current_bin)
                    == Config.change_bin_at_number_of_success_grasps)
                should_change_bin = (
                    Config.mode is not Mode.Evaluate
                    and (self.history.failed_grasps_since_last_success_in_bin(
                        self.current_bin) >=
                         Config.change_bin_at_number_of_failed_grasps
                         or action.type == 'bin_empty'))
                if should_change_bin_for_evaluation or (Config.change_bins
                                                        and should_change_bin):
                    if Config.mode is Mode.Evaluate:
                        pass
                        # history.save_grasp_rate_prediction_step_evaluation(Config.evaluation_path)

                    self.current_bin = Frames.get_next_bin(self.current_bin)
                    self.agent.reinfer_next_time = True
                    current_bin_episode = None
                    logger.info('Switch to other bin.')

                    if Config.mode is not Mode.Perform and Config.home_gripper:
                        self.gripper.homing()

                if Config.mode is Mode.Measure and current_episode.actions and current_episode.save:
                    logger.info(f'Save episode {current_episode.id}.')
                    self.saver.save_episode(current_episode)

                # Retrain model
                if Config.train_model and self.history.total(
                ) > 0 and not self.history.total(
                ) % Config.train_model_every_number_cycles:
                    logger.warning('Retrain model!')
                    self.retrain_model()

        logger.info('Finished cleanly.')
Esempio n. 6
0
from config import Config
from data.loader import Loader
from utils.image import draw_pose
from utils.param import SelectionMethod

if __name__ == '__main__':
    agent_place = Agent(use_goal_images=True)

    if not Config.use_goal_images:
        raise Exception(f'Does not use goal images!')

    collection = 'placing-3'
    episode_id = '2020-02-04-00-34-54-455'

    if agent_place.network_type == '1':
        image = Loader.get_image(collection, episode_id, 0, 'ed-v')
        image_goal = Loader.get_image(collection, episode_id, 0, 'ed-goal')

        actions = agent_place.infer([image], SelectionMethod.Max, [image_goal])

    elif agent_place.network_type == '2':
        image = Loader.get_image(collection, episode_id, 0, 'ed-v')
        image_place = Loader.get_image(collection, episode_id, 1, 'ed-v')
        image_goal = Loader.get_image(collection, episode_id, 1, 'ed-goal')

        actions = agent_place.infer([image], SelectionMethod.Max, [image_goal],
                                    [image_place])
        actions = agent_place.infer([image], SelectionMethod.Max, [image_goal],
                                    [image_place])

    print(
 def get_image(self, database: str, episode_id: str, suffix: str):
     image = Loader.get_image(database, episode_id, suffix)
     if image is None:
         print(f'File not found: {database}, {episode_id}, {suffix}')
     return image