def isolateClusters(selection, datasetName): """ Create a new data set from a selection of clusters. @type selection: list @var selection: The indices of the clusters to be merged. @type datasetName: str @var datasetName: The display name for the new data set. """ if (len(selection) > 0): currFCData = DataStore.getCurrentDataSet() if (datasetName == ""): datasetName = currFCData.displayname clusters = separate(currFCData.data, currFCData.getCurrentClustering()) # merge selected clusters newData = dh.mergeData(selection, clusters) # assign new data set to the store newFCData = FacsData('', currFCData.labels, newData, parent=currFCData.ID) newFCData.displayname = datasetName newFCData.selDims = currFCData.selDims # add basic text annotations textAnn = {'parent': currFCData.displayname} textAnn['events'] = len(newFCData.data) newFCData.annotations['text'] = textAnn DataStore.add(newFCData)
def loadState(dir, filename): """ Restore the system state as stored to disk. @type dir: string @param path: The directory under which the the saved system state is stored @type filename: str @param filename: The name of the saved project file (.find) @rtype: tuple @return: A list of subplot settings (dicts) retrieved from the file, The index of the currently selected subplot, The currently selected axes, The number of rows and columns in the figure (grid size) """ store = shelve.open(os.path.join(dir, filename)) #store = dbopen(os.path.join(dir, filename)) datakeys = store['data'] try: bindata = np.load(os.path.join(dir,store['binfile'])) except IOError: bindata = None except BadZipfile: wx.MessageBox('The file \'%s\' may have become corrupted. Project loading has been cancelled' % store['binfile'], 'Data Loading Error', wx.OK|wx.ICON_ERROR) raise ProjectLoadingError('BadZipfile: %s' % os.path.join(dir,store['binfile'])) # Parse data sets for dID in datakeys: dStr = 'data-%s' % dID dsett = store[dStr] ann = dsett['annotations'] if 'annotations' in dsett else {} ana = dsett['analysis'] if 'analysis' in dsett else {} fdata = FacsData(dsett['filename'], dsett['labels'], bindata[dStr], annotations=ann, analysis=ana, parent=dsett['parent']) fdata.displayname = dsett['displayname'] fdata.ID = dsett['ID'] fdata.children = dsett['children'] fdata.selDims = dsett['selDims'] fdata.nodeExpanded = dsett['nodeExpanded'] # Parse clusterings for cID in dsett['clustering']: cStr = 'clust-%i-%i' % (dID, cID) csett = store[cStr] clusterIDs = bindata[cStr] fdata.addClustering(csett['method'], clusterIDs, csett['opts'], cID) fdata.clusteringSelDims[cID] = csett['clusteringSelDims'] fdata.infoExpanded[cID] = csett['infoExpanded'] DataStore.add(fdata) DataStore.selectDataSet(store['current-data']) # Figures if 'figures' in store: for fStr in store['figures']: fDict = store[fStr] splots = [] for pStr in fDict['subplots']: splots.append(store[pStr]) fDict['subplots'] = splots f = Figure() f.load(fDict) FigureStore.add(f) # handle older save files w/o Figure support else: # load the saved subplots into a new 'Default' Figure plots = [] for pStr in store['plots']: plots.append(store[pStr]) defFig = Figure('Default', plots, store['current-subplot'], store['grid'], store['selected-axes']) FigureStore.add(defFig) if 'current-figure' in store: FigureStore.setSelectedFigure(store['current-figure']) else: FigureStore.setSelectedFigure(0)