Esempio n. 1
0
def main():
    parser = argparse.ArgumentParser(
        description="SSD Evaluation on VOC Dataset.")
    parser.add_argument("--trained_model", type=str)

    parser.add_argument(
        "--dataset_type",
        default="voc",
        type=str,
        help='Specify dataset type. Currently support voc and open_images.')
    parser.add_argument(
        "--dataset",
        type=str,
        help="The root directory of the VOC dataset or Open Images dataset.")
    parser.add_argument("--label_file", type=str, help="The label file path.")
    parser.add_argument("--use_cuda", type=str2bool, default=True)
    parser.add_argument("--use_2007_metric", type=str2bool, default=True)
    parser.add_argument("--nms_method", type=str, default="hard")
    parser.add_argument("--iou_threshold",
                        type=float,
                        default=0.5,
                        help="The threshold of Intersection over Union.")
    parser.add_argument("--eval_dir",
                        default="eval_results",
                        type=str,
                        help="The directory to store evaluation results.")
    parser.add_argument('--mb2_width_mult',
                        default=1.0,
                        type=float,
                        help='Width Multiplifier for MobilenetV2')
    args = parser.parse_args()
    DEVICE = torch.device(
        "cuda:0" if torch.cuda.is_available() and args.use_cuda else "cpu")

    eval_path = pathlib.Path(args.eval_dir)
    eval_path.mkdir(exist_ok=True)
    timer = Timer()
    class_names = [name.strip() for name in open(args.label_file).readlines()]

    if args.dataset_type == "voc":
        dataset = VOCDataset(args.dataset, is_test=True)

    true_case_stat, all_gb_boxes, all_difficult_cases = group_annotation_by_class(
        dataset)

    net = create_mobilenetv2_ssd_lite(len(class_names),
                                      width_mult=args.mb2_width_mult,
                                      is_test=True)

    timer.start("Load Model")
    net.load(args.trained_model)
    net = net.to(DEVICE)
    print(f'It took {timer.end("Load Model")} seconds to load the model.')
    predictor = create_mobilenetv2_ssd_lite_predictor(
        net, nms_method=args.nms_method, device=DEVICE)

    results = []
    for i in range(len(dataset)):
        print("process image", i)
        timer.start("Load Image")
        image = dataset.get_image(i)
        print("Load Image: {:4f} seconds.".format(timer.end("Load Image")))
        timer.start("Predict")
        boxes, labels, probs = predictor.predict(image)
        print("Prediction: {:4f} seconds.".format(timer.end("Predict")))
        indexes = torch.ones(labels.size(0), 1, dtype=torch.float32) * i
        results.append(
            torch.cat(
                [
                    indexes.reshape(-1, 1),
                    labels.reshape(-1, 1).float(),
                    probs.reshape(-1, 1),
                    boxes + 1.0  # matlab's indexes start from 1
                ],
                dim=1))
    results = torch.cat(results)
    for class_index, class_name in enumerate(class_names):
        if class_index == 0: continue  # ignore background
        prediction_path = eval_path / f"det_test_{class_name}.txt"
        with open(prediction_path, "w") as f:
            sub = results[results[:, 1] == class_index, :]
            for i in range(sub.size(0)):
                prob_box = sub[i, 2:].numpy()
                image_id = dataset.ids[int(sub[i, 0])]
                print(image_id + " " + " ".join([str(v) for v in prob_box]),
                      file=f)
    aps = []
    print("\n\nAverage Precision Per-class:")
    for class_index, class_name in enumerate(class_names):
        if class_index == 0:
            continue
        prediction_path = eval_path / f"det_test_{class_name}.txt"
        ap = compute_average_precision_per_class(
            true_case_stat[class_index], all_gb_boxes[class_index],
            all_difficult_cases[class_index], prediction_path,
            args.iou_threshold, args.use_2007_metric)
        aps.append(ap)
        print(f"{class_name}: {ap}")

    print(f"\nAverage Precision Across All Classes:{sum(aps)/len(aps)}")
Esempio n. 2
0
def get_map(net_para, dataset, label_file):
    DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    eval_path = pathlib.Path("eval_results")
    eval_path.mkdir(exist_ok=True)
    timer = Timer()
    class_names = [name.strip() for name in open(label_file).readlines()]

    dataset = VOCDataset(dataset, is_test=True)

    true_case_stat, all_gb_boxes, all_difficult_cases = group_annotation_by_class(
        dataset)
    net = create_mobilenetv2_ssd_lite(len(class_names),
                                      width_mult=1.0,
                                      is_test=True)

    timer.start("Load Model")
    net.load_weight(net_para)
    net = net.to(DEVICE)
    predictor = create_mobilenetv2_ssd_lite_predictor(net,
                                                      nms_method="hard",
                                                      device=DEVICE)

    results = []
    for i in tqdm(range(len(dataset))):
        timer.start("Load Image")
        image = dataset.get_image(i)
        timer.start("Predict")
        boxes, labels, probs = predictor.predict(image)
        indexes = torch.ones(labels.size(0), 1, dtype=torch.float32) * i
        results.append(
            torch.cat(
                [
                    indexes.reshape(-1, 1),
                    labels.reshape(-1, 1).float(),
                    probs.reshape(-1, 1),
                    boxes + 1.0  # matlab's indexes start from 1
                ],
                dim=1))
    results = torch.cat(results)
    for class_index, class_name in enumerate(class_names):
        if class_index == 0: continue  # ignore background
        prediction_path = eval_path / f"det_test_{class_name}.txt"
        with open(prediction_path, "w") as f:
            sub = results[results[:, 1] == class_index, :]
            for i in range(sub.size(0)):
                prob_box = sub[i, 2:].numpy()
                image_id = dataset.ids[int(sub[i, 0])]
                print(image_id + " " + " ".join([str(v) for v in prob_box]),
                      file=f)
    aps = []
    print("\n\nAverage Precision Per-class:")
    for class_index, class_name in enumerate(class_names):
        if class_index == 0:
            continue
        prediction_path = eval_path / f"det_test_{class_name}.txt"
        ap = compute_average_precision_per_class(
            true_case_stat[class_index], all_gb_boxes[class_index],
            all_difficult_cases[class_index], prediction_path, 0.5, True)
        aps.append(ap)
        print(f"{class_name}: {ap}")

    print(f"\nAverage Precision Across All Classes:{sum(aps) / len(aps)}")
    return sum(aps) / len(aps)