def distribution_test(df: pd.DataFrame = pd.DataFrame()): if df.empty: df = filter(read()) distribution.test_exp(df) distribution.test_gam(df) distribution.test_wei(df) distribution.test_logn(df) distribution.test_pare(df)
def population_statistics(feature_description, data, treatment, target, threshold, is_above, statistic_functions): """ prints the results of the statistics functions on the target parameter based on a split of the data. the split is based on whether the treatment line in the data is higher then the threshold. note: filter_by_feature has been defined as filter, and print details has been defined as print_dt to reduce line length. :param feature_description: title :param data: the data for analysis :param treatment: the field to sort the data by threshold :param target: the field to be used for the statistic functions :param threshold: the threshold for sorting the data on treatment by :param is_above: decides if the data used is above threshold or not :param statistic_functions: the functions to analise the filtered target data by :return: """ print_dt( filter(data, treatment, [x for x in data[treatment] if (x <= threshold) ^ is_above])[0], target, statistic_functions)
import numpy as np from models import GP3DModel, IRISplineModel, HybridModel, LogSpaceModel, LinearModel, ProductModel, DifferenceModel from plot import Plot import statsmodels.api as sm from statsmodels.tools import add_constant metric = sys.argv[1] nowtime = None if len(sys.argv) > 2: nowtime = dateutil.parser.parse(sys.argv[2]) else: nowtime = dt.datetime.now(timezone.utc) df = data.get_data() df = data.filter(df, max_age=dt.datetime.now() - dt.timedelta(minutes=60), required_metrics=[metric], min_confidence=0.01) irimodel = IRISplineModel("/iri.latest") irimodel.train(metric) irimodel_orig = irimodel if len(df) == 0: model = irimodel else: pred = irimodel.predict(df['station.longitude'].values, df['station.latitude'].values) error = pred - df[metric].values print(df[metric].values) print(pred)
def main(): df = normalize(filter(read())) print('Running normality tests...') normality_test(df) print('Running distribution tests...') distribution_test(df)
def normality_test(df: pd.DataFrame = pd.DataFrame()): if df.empty: df = filter(read()) normality.test_and(df) normality.test_ks(df) normality.test_sh(df)
if event.type == pygame.QUIT: running = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_q: running = False #if event.key == pygame.K_LEFT: # engine.keyEvent = "L" #if event.key == pygame.K_RIGHT: # engine.keyEvent = "R" if event.key == pygame.K_SPACE: pause = (not pause) engine.keyEvent = "SPACE" wave = filter(2) prediction = Classifier(wave)[-1] #prediction = predict([wave]) if prediction == "L": engine.keyEvent = "L" elif prediction == "R": engine.keyEvent = "R" display.fill([0, 0, 0]) if pause: engine.draw(display) engine.drawPause(display) pygame.display.update()