def __init__(self, config, args): self.config = config for k, v in args.__dict__.items(): setattr(self.config, k, v) setattr(self.config, 'save_dir', '{}_log'.format(self.config.dataset)) disp_str = '' for attr in sorted(dir(self.config), key=lambda x: len(x)): if not attr.startswith('__'): disp_str += '{} : {}\n'.format(attr, getattr(self.config, attr)) sys.stdout.write(disp_str) sys.stdout.flush() self.labeled_loader, self.unlabeled_loader, self.unlabeled_loader2, self.dev_loader, self.special_set = \ data.get_cifar_loaders(config) self.dis = model.Discriminative(config).cuda() self.gen = model.Generator(image_size=config.image_size, noise_size=config.noise_size).cuda() self.enc = model.Encoder(config.image_size, noise_size=config.noise_size, output_params=True).cuda() self.dis_optimizer = optim.Adam(self.dis.parameters(), lr=config.dis_lr, betas=(0.5, 0.999)) self.gen_optimizer = optim.Adam(self.gen.parameters(), lr=config.gen_lr, betas=(0.0, 0.999)) self.enc_optimizer = optim.Adam(self.enc.parameters(), lr=config.enc_lr, betas=(0.0, 0.999)) self.d_criterion = nn.CrossEntropyLoss() if not os.path.exists(self.config.save_dir): os.makedirs(self.config.save_dir) log_path = os.path.join(self.config.save_dir, '{}.FM+VI.{}.txt'.format(self.config.dataset, self.config.suffix)) self.logger = open(log_path, 'w') self.logger.write(disp_str) print(self.dis)
def __init__(self, config, args): self.config = config for k, v in args.__dict__.items(): setattr(self.config, k, v) setattr(self.config, 'save_dir', '{}_log'.format(self.config.dataset)) disp_str = '' for attr in sorted(dir(self.config), key=lambda x: len(x)): if not attr.startswith('__'): disp_str += '{} : {}\n'.format(attr, getattr(self.config, attr)) sys.stdout.write(disp_str) sys.stdout.flush() self.labeled_loader, self.unlabeled_loader, self.unlabeled_loader2, self.dev_loader, self.special_set = data.get_cifar_loaders( config) self.dis = model.Discriminative(config).cuda() self.gen = model.Generator(image_size=config.image_size, noise_size=config.noise_size).cuda() self.enc = model.Encoder(config.image_size, noise_size=config.noise_size, output_params=True).cuda() # load model # ta self.load_network(self.dis, 'D', strict=False) self.load_network(self.gen, 'G', strict=False) self.load_network(self.enc, 'E', strict=False) if not os.path.exists(self.config.save_dir): os.makedirs(self.config.save_dir) log_path = os.path.join( self.config.save_dir, '{}.FM+VI.{}.txt'.format(self.config.dataset, self.config.suffix)) self.logger = open(log_path, 'wb') self.logger.write(disp_str) print self.dis
def __init__(self, config, args): self.config = config for k, v in args.__dict__.items(): setattr(self.config, k, v) setattr(self.config, 'save_dir', '{}_log'.format(self.config.dataset)) disp_str = '' for attr in sorted(dir(self.config), key=lambda x: len(x)): if not attr.startswith('__'): disp_str += '{} : {}\n'.format(attr, getattr(self.config, attr)) sys.stdout.write(disp_str) sys.stdout.flush() self.labeled_loader, self.unlabeled_loader, self.dev_loader, self.special_set = data.get_cifar_loaders( config) self.dis = model.Discriminative(config).cuda() self.ema_dis = model.Discriminative( config).cuda() # , ema=True).cuda() # for param in self.ema_dis.parameters(): # param.detach_() if config.gen_mode != "non": self.gen = model.generator(image_side=config.image_side, noise_size=config.noise_size, large=config.double_input_size, gen_mode=config.gen_mode).cuda() dis_para = [ { 'params': self.dis.parameters() }, ] if 'm' in config.dis_mode: # svhn: 168; cifar:192 self.m_criterion = FocalLoss(gamma=2) if config.dis_double: self.dis_dou = model.Discriminative_out(config).cuda() dis_para.append({'params': self.dis_dou.parameters()}) self.dis_optimizer = optim.Adam(dis_para, lr=config.dis_lr, betas=(0.5, 0.999)) # self.dis_optimizer = optim.SGD(self.dis.parameters(), lr=config.dis_lr, # momentum=config.momentum, # weight_decay=config.weight_decay, # nesterov=config.nesterov) if hasattr(self, 'gen'): if config.gop == 'SGD': self.gen_optimizer = optim.SGD( self.gen.parameters(), lr=config.gen_lr, momentum=config.momentum, weight_decay=config.weight_decay, nesterov=config.nesterov) else: self.gen_optimizer = optim.Adam(self.gen.parameters(), lr=config.gen_lr, betas=(0.0, 0.999)) if config.gen_mode == "z2i": self.enc = model.Encoder(config.image_side, noise_size=config.noise_size, output_params=True).cuda() self.enc_optimizer = optim.Adam(self.enc.parameters(), lr=config.enc_lr, betas=(0.0, 0.999)) self.d_criterion = nn.CrossEntropyLoss() if config.consistency_type == 'mse': self.consistency_criterion = losses.softmax_mse_loss # F.MSELoss() # (size_average=False) elif config.consistency_type == 'kl': self.consistency_criterion = losses.softmax_kl_loss # nn.KLDivLoss() # (size_average=False) else: pass self.consistency_weight = 0 if not os.path.exists(self.config.save_dir): os.makedirs(self.config.save_dir) if "," in config.dis_mode or config.cd_mode_iter > 0: assert "," in config.dis_mode assert config.cd_mode_iter > 0 self.dis_mode = config.dis_mode config.dis_mode = config.dis_mode.split(",")[0] log_path = os.path.join( self.config.save_dir, '{}.FM+VI.{}.txt'.format(self.config.dataset, self.config.suffix)) if config.resume: self.logger = open(log_path, 'ab') else: self.logger = open(log_path, 'wb') self.logger.write(disp_str) # for arcface self.s = 30.0 m = 0.50 self.cos_m = math.cos(m) self.sin_m = math.sin(m) self.th = math.cos(math.pi - m) self.mm = math.sin(math.pi - m) * m # for dg start epoch if config.dg_start > 0: self.dg_flag = False else: self.dg_flag = True print self.dis
def __init__(self, config, args): super().__init__() self.config = config if args is not None: for k, v in args.__dict__.items(): setattr(self.config, k, v) setattr( self.config, 'save_dir', '{}/{}_{}'.format(self.config.log_root, self.config.dataset, self.config.suffix)) if hasattr(config, 'inherit'): setattr( self.config, 'inherit_dir', '{}/{}_{}'.format(self.config.log_root, self.config.dataset, self.config.inherit)) if not os.path.exists(self.config.save_dir): os.makedirs(self.config.save_dir) log_path = os.path.join( self.config.save_dir, '{}_{}_log.txt'.format(self.config.dataset, self.config.suffix)) self.logger = open(log_path, 'a') disp_str = '' for attr in sorted(dir(self.config), key=lambda x: len(x)): if not attr.startswith('__'): disp_str += '{} : {}\n'.format(attr, getattr(self.config, attr)) self.logger.write(disp_str) self.logger.flush() sys.stdout.write(disp_str) sys.stdout.flush() self.dis = cifar_model.Discriminative(config).cuda() self.gen = cifar_model.Generator(image_size=config.image_size, noise_size=config.noise_size).cuda() self.enc = cifar_model.Encoder(config.image_size, noise_size=config.noise_size, output_params=True).cuda() self.smp = cifar_model.Sampler(noise_size=config.noise_size).cuda() self.dis_optimizer = optim.Adam(self.dis.parameters(), lr=config.dis_lr, betas=(0.5, 0.999)) self.gen_optimizer = optim.Adam(self.gen.parameters(), lr=config.gen_lr, betas=(0.0, 0.999)) self.enc_optimizer = optim.Adam(self.enc.parameters(), lr=config.enc_lr, betas=(0.0, 0.999)) self.smp_optimizer = optim.Adam(self.smp.parameters(), lr=config.smp_lr, betas=(0.5, 0.9999)) self.d_criterion = nn.CrossEntropyLoss() self.mse_loss = nn.MSELoss() self.bce_loss = nn.BCELoss() iter = self.load_checkpoint(self.config.save_dir) if iter == 0 and hasattr(config, 'inherit'): self.load_checkpoint(self.config.inherit_dir) self.iter_cnt = 0 self.labeled_loader, self.unlabeled_loader, self.unlabeled_loader2, self.dev_loader = data.get_cifar_loaders( config)
def __init__(self, config, args): self.config = config for k, v in args.__dict__.items(): setattr(self.config, k, v) setattr(self.config, 'save_dir', '{}_log'.format(self.config.dataset)) disp_str = '' for attr in sorted(dir(self.config), key=lambda x: len(x)): if not attr.startswith('__'): disp_str += '{} : {}\n'.format(attr, getattr(self.config, attr)) sys.stdout.write(disp_str) sys.stdout.flush() self.labeled_loader, self.unlabeled_loader, self.dev_loader, self.special_set = data.get_cifar_loaders( config) self.dis = model.Discriminative(config).cuda() self.ema_dis = model.Discriminative(config, ema=True).cuda() self.gen = model.Generator(image_size=config.image_size, noise_size=config.noise_size).cuda() self.enc = model.Encoder(config.image_size, noise_size=config.noise_size, output_params=True).cuda() # self.dis_optimizer = optim.Adam(self.dis.parameters(), lr=config.dis_lr, betas=(0.5, 0.999)) self.dis_optimizer = optim.SGD(self.dis.parameters(), lr=config.dis_lr, momentum=config.momentum, weight_decay=config.weight_decay, nesterov=config.nesterov) self.gen_optimizer = optim.Adam(self.gen.parameters(), lr=config.gen_lr, betas=(0.0, 0.999)) self.enc_optimizer = optim.Adam(self.enc.parameters(), lr=config.enc_lr, betas=(0.0, 0.999)) self.d_criterion = nn.CrossEntropyLoss() if config.consistency_type == 'mse': self.consistency_criterion = losses.softmax_mse_loss # nn.MSELoss() # (size_average=False) elif config.consistency_type == 'kl': self.consistency_criterion = losses.softmax_kl_loss # nn.KLDivLoss() # (size_average=False) else: pass self.consistency_weight = 0 if not os.path.exists(self.config.save_dir): os.makedirs(self.config.save_dir) if self.config.resume: pass log_path = os.path.join( self.config.save_dir, '{}.FM+VI.{}.txt'.format(self.config.dataset, self.config.suffix)) self.logger = open(log_path, 'wb') self.logger.write(disp_str) print self.dis