def load_advent_dat(data): import os from data import parse datapath = os.path.join(os.path.dirname(__file__), 'advent.dat') with open(datapath, 'r') as datafile: parse(data, datafile)
def __init__(self,gender): self.description = { '1': data.parse('<personality.trait.neutral>'), '2': data.parse('<personality.trait.positive>'), '3': data.parse('<personality.trait.positive> and <personality.trait.neutral>'), '4': data.parse('<personality.trait.positive> and <personality.trait.neutral> but <personality.trait.negitive>'), '5': data.parse('<personality.trait.positive> but <personality.trait.negitive>') }[str(random.randint(1,5))];
def test_parse_GOLD_2_yields_list_of_Gold(): golds = data.parse("GOLD_2.csv", data.gold) assert len(golds) > 0 for gold in golds: assert isinstance(gold, data.Gold) for column in gold: assert_is_type_or_None(gold.date, datetime.date) assert_is_type_or_None(gold.usd, float) assert_is_type_or_None(gold.gbp, float) assert_is_type_or_None(gold.eur, float)
def test_parse(): not_a_file = mock.Mock() csv = """Date, Prime, Prime, Prime, Prime, Nothing, Nothing, FourPointSeven 2399-07-12,7,1597,13,229, ,,4.7 """ stream = io.StringIO(csv) with mock.patch("data.open_data_file", return_value=stream) as open_data_file: data_set = data.parse("A StringIO", lambda args: args) open_data_file.assert_called_with("A StringIO") assert data_set == ["2399-07-12,7,1597,13,229, ,,4.7"]
def test_parse_NASDAQ_AAPL_yields_list_of_Aapl(): aapls = data.parse("NASDAQ_AAPL.csv", data.aapl) assert len(aapls) > 0 for aapl in aapls: assert isinstance(aapl, data.Aapl) for column in aapl: assert_is_type_or_None(aapl.date, datetime.date) assert_is_type_or_None(aapl.open, float) assert_is_type_or_None(aapl.high, float) assert_is_type_or_None(aapl.low, float) assert_is_type_or_None(aapl.close, float) assert_is_type_or_None(aapl.volume, float)
def test_parse_MTGOXUSD_yields_list_of_Bitcoin(): bitcoins = data.parse("MTGOXUSD.csv", data.bitcoin) assert len(bitcoins) > 0 for bitcoin in bitcoins: assert isinstance(bitcoin, data.Bitcoin) for column in bitcoin: assert_is_type_or_None(bitcoin.date, datetime.date) assert_is_type_or_None(bitcoin.open, float) assert_is_type_or_None(bitcoin.high, float) assert_is_type_or_None(bitcoin.low, float) assert_is_type_or_None(bitcoin.close, float) assert_is_type_or_None(bitcoin.volume_btc, float) assert_is_type_or_None(bitcoin.volume_usd, float) assert_is_type_or_None(bitcoin.weighted_price, float)
def insert_data(): filepath = select_file("osm") data.parse(filepath)
""" Sequential Child-Combination Tree-LSTM Network for PolEval 2017 evaluation campaign Implementation inspired by "Efficient recursive (tree-structured) neural networks in TensorFlow" available at https://github.com/erickrf/treernn """ import sys import numpy as np import tensorflow as tf import data CHILDREN_NB = 5 word2idx, train_data, test_data = data.parse() embed_size = 16 label_size = 3 max_epochs = 3 lr = 0.01 with tf.variable_scope('embed'): embeddings = tf.get_variable('embeddings', [len(word2idx), embed_size]) with tf.variable_scope('lstm'): W_i = tf.get_variable('W_i', [2 * embed_size, embed_size]) W_f = tf.get_variable('W_f', [2 * embed_size, embed_size]) W_o = tf.get_variable('W_o', [2 * embed_size, embed_size]) W_g = tf.get_variable('W_g', [2 * embed_size, embed_size]) c = tf.get_variable('c', [embed_size])
outbase = args.outbase or os.path.basename(os.path.splitext(args.input.rstrip('/'))[0]) def cast_if_number(s): try: return float(s) if '.' in s else int(s) except ValueError: return s p_kwargs = {} if args.parser_kwarg: for item in args.parser_kwarg: kw, val = item.split('=') p_kwargs[kw] = cast_if_number(val) log.debug(p_kwargs) w_kwargs = {} if args.writer_kwarg: for item in args.writer_kwarg: kw, val = item.split('=') w_kwargs[kw] = cast_if_number(val) log.debug(w_kwargs) ds = data.parse(args.input, load_data=True, ignore_json=args.ignore_json, filetype=args.parser, **p_kwargs) if not ds: raise DataError('%s could not be parsed' % args.input) if ds.data is None: raise DataError('%s has no data' % args.input) data.write(ds, ds.data, outbase, filetype=args.writer, **w_kwargs)
""" Day 2 - Part 1 & 2 """ import data def compute(row): for i in row.content: for j in row.content: if (i != j) & (i % j == 0): return i / j with open("inputs/day2", "r") as f: read_data = f.read() f.close() d = data.parse(read_data) res1 = 0 res2 = 0 for row in d.rows: res1 += (row.max - row.min) res2 += compute(row) print "Part1 : " + str(res1) + ", Part2 : " + str(res2)