def update_repos(): current_time = datetime.now() new_time = (current_time.strftime("%c")) # Drop tables engine = create_engine(ProductionConfig.SQLALCHEMY_DATABASE_URI) GitRepo.__table__.drop(engine) GitUser.__table__.drop(engine) db.create_all() # Update users users = LocalUser.query.all() timezone = {'Time-Zone': 'PST8PDT'} for user in users: username = user.localuser git_data = requests.get( f'https://api.github.com/users/{username}/events?per_page=100', params=timezone) content = git_data.content parsed_json = json.loads(content) parse_data(parsed_json) # Timestamp update engine = create_engine(ProductionConfig.SQLALCHEMY_DATABASE_URI) Timestamp.__table__.drop(engine) db.create_all() new_timestamp = Timestamp(time=new_time) db.session.add(new_timestamp) db.session.commit()
def q23_request(led_matrix): raw_response = data.make_request('MTABC_Q23', 503862) valid_until, json_buses = data.parse_data(raw_response) buses = data.simplify_parsed_data(json_buses) led_matrix.device.contrast(32) led_matrix.print_msg(str(buses[0]))
def on_open_saves_dat_clicked(self): if 'saves.dat' in self.open_tabs: return self.activate_tab('saves.dat') try: path = miasutil.find_miasmata_save() except Exception as e: path = QtGui.QFileDialog.getOpenFileName(self, "Select Miasmata Save Location...", None, 'Miasmata save files (*.dat)')[0] if not path: return saves = data.parse_data(open(path, 'rb')) saves.name = data.null_str('saves.dat') view = miasmod_data.MiasmataDataView(saves, sort=True, save_path = path, name='saves.dat') self.add_tab(view, 'saves.dat', 'saves.dat')
def main(): import rs5archive, rs5file, data, imag print 'Opening saves.dat...' saves = open('saves.dat', 'rb') print 'Procesing saves.dat...' saves = data.parse_data(saves) exposure_map = saves[sys.argv[1]]['player']['MAP']['exposure_map'].raw print 'Opening main.rs5...' archive = rs5archive.Rs5ArchiveDecoder(open('main.rs5', 'rb')) print 'Extracting Map_FilledIn...' filledin = rs5file.Rs5ChunkedFileDecoder(archive['TEX\\Map_FilledIn'].decompress()) print 'Decoding Map_FilledIn...' filledin = imag.open_rs5file_imag(filledin, (1024, 1024), 'RGB') print 'Extracting Map_OverlayInfo...' overlayinfo = rs5file.Rs5ChunkedFileDecoder(archive['TEX\\Map_OverlayInfo'].decompress()) print 'Decoding Map_OverlayInfo...' overlayinfo = imag.open_rs5file_imag(overlayinfo, (1024, 1024), 'RGB') print 'Extracting player_map_achievements...' # XXX: Also in environment.rs5 shoreline = rs5file.Rs5ChunkedFileDecoder(archive['player_map_achievements'].decompress()) print 'Generating map...' (image, outline_mask, filledin_mask, overlayinfo_mask, extra) = gen_map(exposure_map, filledin, overlayinfo) print 'Darkening...' image = Image.eval(image, lambda x: x/4) print 'Overlaying shoreline...' overlay_smap(image, shoreline, outline_mask, filledin_mask) print 'Saving exposure_map.png...' image.save('exposure_map.png') print 'Compressing exposure_map...' new_exposure_map = make_exposure_map(outline_mask, filledin_mask, overlayinfo_mask, extra) print 'Comparing...' assert(exposure_map == new_exposure_map) print 'Success'
def prepare_data(path, test=0.1, max_len=None, split=False): poses, parents, rels, _ = parse_data(path, max_len) poses = add_padding_feature( pad_sequences(poses, maxlen=max_len, padding='post')) new_parents = [] for sentence in parents: sentence = pad_sequences(sentence, maxlen=max_len + 1, padding='post') new_parents.append(sentence) parents = add_padding_feature( pad_sequences(new_parents, maxlen=max_len, padding='post')) rels = add_padding_feature( pad_sequences(rels, maxlen=max_len, padding='post')) if split: poses_train, poses_test, parents_train, parents_test, rels_train, rels_test = train_test_split( poses, parents, rels, test_size=test, shuffle=False) return poses_train, poses_test, parents_train, parents_test, rels_train, rels_test, max_len else: return poses, parents, rels, max_len
def parse_contents(contents, filename, date): """ Parses user-submitted dataset. Args: contents (str): A contents string generated from the user-uploaded file. filename (str): The filename of the user-uploaded file. date (str): The date of the user-uploaded file. Returns: Processed data in the form of Python data structures. """ content_type, content_string = contents.split(',') decoded = base64.b64decode(content_string) if 'csv' in filename: # Assume that the user uploaded a CSV file df, data, categories, columns = parse_data( io.StringIO(decoded.decode("ISO-8859-1"))) else: raise ValueError("Only CSV format supported.") return df, data, categories, columns
def main(): cprint('Starting LDS Tools Automator...', 'green', attrs=['bold']) cprint('\tFetching data from Google Sheets...', 'cyan') try: values = data.get_data() except ValueError: cprint('Error: no data in spreadsheet!', 'red', attrs=['bold']) members = data.parse_data(values) decoded = json.loads(members) cprint('\tPulling records...', 'cyan') username = raw_input(colored('\tLDS Username: '******'yellow')) password = getpass.getpass(colored('\tLDS Password: '******'yellow')) session = requests.session() credentials = tools.login(session, username, password) mrns = [] for member in decoded: try: result = records.pull(member, credentials, session) mrns.append(result) cprint('\tsuccess!', 'green') except AssertionError: result = {'error': 'non-200 response', 'row': member['id']} cprint('\terror', 'red', attrs=['bold']) except (ValueError, KeyError, TypeError): result = {'error': 'unable to parse JSON', 'row': member['id']} cprint('\terror', 'red', attrs=['bold']) row = data.build_pulled_row(result) data.update_row(row, result['row']) cprint('\tFetching former bishops...', 'cyan') count = 0 for member in mrns: try: result = bishops.fetch(member, credentials, session) cprint('\tsuccess!', 'green') count += 1 except AssertionError: result = {'error': 'non-200 response', 'row': member['row']} cprint('\terror', 'red', attrs=['bold']) except (ValueError, KeyError, TypeError): result = {'error': 'unable to parse JSON', 'row': member['row']} cprint('\terror', 'red', attrs=['bold']) row = data.build_bishop_row(result) data.update_row(row, result['row']) msg = 'moved %d records' % len(mrns) cprint(msg, 'green', attrs=['bold']) msg = 'found %d bishops' % count cprint(msg, 'green', attrs=['bold'])
ave_acc = float(total_acc) / cnt print "ave_acc:", ave_acc return float(total_acc) / cnt if __name__ == '__main__': args = get_arg() print 'gpu:',args.gpu root_path = "../../data/tasks_1-20_v1-2/en" # 未知語(:k)が引数として与えられた場合、id(:v)を付与する vocab = collections.defaultdict(lambda: len(vocab)) for data_id in range(1,21): # data_id = 1 # glob.glob: マッチしたパスをリストで返す fpath = glob.glob('%s/qa%d_*train.txt' % (root_path, data_id))[0] train_data = data.parse_data(fpath, vocab) fpath = glob.glob('%s/qa%d_*test.txt' % (root_path, data_id))[0] test_data = data.parse_data(fpath, vocab) print('Training data: %d' % len(train_data)) # 文id=1で区切ったとき(story)のデータ数 train_data = convert_data(train_data, args.gpu) test_data = convert_data(test_data, args.gpu) model = MemNN(len(vocab), 20, 50) # (n_units:word_embeddingの次元数(=20), n_vocab:語彙数, max_mem=50) if args.gpu >= 0: model.to_gpu() xp = cupy else: xp = np # Setup an optimizer optimizer = optimizers.Adam(alpha=0.01, beta1=0.9, beta2=0.999, eps=1e-6) optimizer.setup(model)
from bm_alg import boyer_moore_match from routes import save_file, download, file_download_link from dash.dependencies import Input, Output, State try: from predict_input import predict, MODEL except ModuleNotFoundError: print('[WARNING] tensorflow not found.') import dash import plotly.express as px import pandas as pd import dash_html_components as html # Initialize data for initial layout df, DATA, CATEGORIES, COLUMNS = parse_data(DATASET) def parse_json(json_data, category): """ Parses the <json_data> from intermediate value. Args: json_data (str): A string of data to process in JSON format. category (str): The category ('all' / 'spam' / 'ham') to extract data from. Returns: (status_code, data), where status_code = 0 if there is no error, 1 otherwise. """ if json_data: loaded_data = json.loads(json_data)
return float(total_acc) / cnt if __name__ == '__main__': args = get_arg() print 'gpu:', args.gpu root_path = "../../data/tasks_1-20_v1-2/en" # 未知語(:k)が引数として与えられた場合、id(:v)を付与する vocab = collections.defaultdict(lambda: len(vocab)) for data_id in range(1, 21): print "-------------------------------------" print "task_id:", data_id data_id = 8 # data_id = 1 # glob.glob: マッチしたパスをリストで返す fpath = glob.glob('%s/qa%d_*train.txt' % (root_path, data_id))[0] train_data = data.parse_data(fpath, vocab) fpath = glob.glob('%s/qa%d_*test.txt' % (root_path, data_id))[0] test_data = data.parse_data(fpath, vocab) # print('Training data: %d' % len(train_data)) # 文id=1で区切ったとき(story)のデータ数 train_data = convert_data(train_data, args.gpu) test_data = convert_data(test_data, args.gpu) model = MemNN( len(vocab), 20, 50) # (n_units:word_embeddingの次元数(=20), n_vocab:語彙数, max_mem=50) if args.gpu >= 0: model.to_gpu() xp = cupy else: xp = np print vocab # Setup an optimizer
def main(): parser = argparse.ArgumentParser() parser.add_argument('--exp_name', required=True, help='experiment result saving path') parser.add_argument('--epoch', type=int, default=10) parser.add_argument('--batch_size', type=int, default=512) parser.add_argument('--model', type=str, default='GRU_CNN') parser.add_argument('--cuda', action='store_true') args = parser.parse_args() # data parser raw_data, raw_label = load_data(cfg.data_root, cfg.data_ext) seqs = parse_data(raw_data) labels = parse_label(raw_label) onehot_labels = get_onehot(labels) padded_seqs, embed_size = pad_feature(seqs, padding_ext=cfg.padding_ext, global_padding=cfg.padding_all) padded_seqs = np.array(padded_seqs) labels = np.array(labels) data_size = len(padded_seqs) label_size = len(set(labels)) data_idxs = list(range(data_size)) training_split = 0.7 train_idx = random.sample(data_idxs, int(data_size * training_split)) train_dict = defaultdict(int) for idx in train_idx: train_dict[idx] = 1 val_idx = [idx for idx in data_idxs if not train_dict[idx] == 1] train_onehot = np.array([onehot_labels[idx] for idx in train_idx]) val_onehot = np.array([onehot_labels[idx] for idx in val_idx]) train_dataset = Dataset(padded_seqs, labels, train_idx, mode='train') val_dataset = Dataset(padded_seqs, labels, val_idx, mode='val') train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=cfg.num_workers) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=cfg.num_workers) criterion = nn.CrossEntropyLoss() if args.cuda: criterion = criterion.cuda() if args.model == 'GRU_CNN': model = GRU_CNN(vocab_size=data_size, emb_size=embed_size, label_size=label_size, hidden_1=cfg.hidden_1, hidden_2=cfg.hidden_2, pt_embed=None, dropout=cfg.dropout) elif args.model == 'Text_CNN': model = Text_CNN(vocab_size=data_size, emb_size=embed_size, output_channels=cfg.kernel_dims, kernel_heights=cfg.kernel_heights, kernel_width=embed_size, label_size=label_size, pt_embed=None, dropout=cfg.dropout) else: raise NotImplementedError if args.cuda: model = model.cuda() optimizer = torch.optim.Adam(model.get_trainable_parameters(), lr=cfg.learning_rate, betas=cfg.betas, eps=cfg.eps) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.2, patience=2, verbose=1) best_acc = 0 for epoch in range(args.epoch): train_loss, train_acc, train_auc = train_epoch(model, args.batch_size, train_loader, optimizer, criterion, train_onehot) val_loss, val_acc, val_auc = eval_epoch(model, args.batch_size, val_loader, criterion, val_onehot) scheduler.step(val_loss) print( '[training][Epoch:{epoch}] loss:{loss:.3f} accu:{accu:.3f} auc:{auc:.3f}' .format(epoch=epoch, loss=train_loss, accu=train_acc, auc=train_auc)) print( '[validation][Epoch:{epoch}] loss:{loss:.3f} accu:{accu:.3f} auc:{auc:.3f}' .format(epoch=epoch, loss=val_loss, accu=val_acc, auc=val_auc)) ckpt = dict(model=model.state_dict(), settings=args, epoch=epoch, optim=optimizer, accu=val_acc) if val_acc > best_acc: best_acc = val_acc best_model = model save_dir = osp.join(cfg.model_dir, args.exp_name) if not osp.exists(save_dir): os.makedirs(save_dir) torch.save(ckpt, osp.join(save_dir, 'epoch_' + str(epoch) + '.ckpt')) print('Best acc:{:.3f}'.format(best_acc))
data.get_single_feature(b, 4, data_set, sample_sizes), color='y') ax.legend(['top', 'jg', 'mid', 'adc', 'sup']) ax.grid(True) plt.xlabel('Param ' + str(a)) plt.ylabel('Param ' + str(b)) plt.show() #Scatterplot of Assists vs Gold Share plot_param(1, 3, inputs, sample_sizes) plt.clf() #Scatterplot of Deaths vs Gold Share plot_param(0, 3, inputs, sample_sizes) #url strings of testing data for each position sup_2020_playoffs_url = "https://lol.gamepedia.com/Special:RunQuery/TournamentStatistics?TS%5Bpreload%5D=TournamentByChampionRole&TS%5Brole%5D=Support&TS%5Btournament%5D=LCS/2020%20Season/Spring%20Playoffs&pfRunQueryFormName=TournamentStatistics" top_2020_playoffs_url = "https://lol.gamepedia.com/Special:RunQuery/TournamentStatistics?TS%5Bpreload%5D=TournamentByChampionRole&TS%5Brole%5D=Top&TS%5Btournament%5D=NA%20Academy%20League/2020%20Season/Spring%20Playoffs&pfRunQueryFormName=TournamentStatistics" mid_2020_playoffs_url = "https://lol.gamepedia.com/Special:RunQuery/TournamentStatistics?TS%5Bpreload%5D=TournamentByChampionRole&TS%5Brole%5D=Mid&TS%5Btournament%5D=NA%20Academy%20League/2020%20Season/Spring%20Playoffs&pfRunQueryFormName=TournamentStatistics" adc_2020_playoffs_url = "https://lol.gamepedia.com/Special:RunQuery/TournamentStatistics?TS%5Bpreload%5D=TournamentByChampionRole&TS%5Brole%5D=AD%20Carry&TS%5Btournament%5D=NA%20Academy%20League/2020%20Season/Spring%20Playoffs&pfRunQueryFormName=TournamentStatistics" jg_2020_playoffs_url = "https://lol.gamepedia.com/Special:RunQuery/TournamentStatistics?TS%5Bpreload%5D=TournamentByChampionRole&TS%5Brole%5D=Jungle&TS%5Btournament%5D=NA%20Academy%20League/2020%20Season/Spring%20Playoffs&pfRunQueryFormName=TournamentStatistics" #testing samples of each position inputs_top = data.parse_data(top_2020_playoffs_url, params) inputs_jg = data.parse_data(jg_2020_playoffs_url, params) inputs_mid = data.parse_data(mid_2020_playoffs_url, params) inputs_adc = data.parse_data(adc_2020_playoffs_url, params) inputs_sup = data.parse_data(sup_2020_playoffs_url, params) #prints accuracy of model print_acc(inputs_top, inputs_jg, inputs_mid, inputs_adc, inputs_sup)