Esempio n. 1
0
def teacher_details():
    # init a basic bar chart:
    # http://bokeh.pydata.org/en/latest/docs/user_guide/plotting.html#bars



    # grab the static resources
    js_resources = INLINE.render_js()
    css_resources = INLINE.render_css()

    # render template
    script, div1 = plotdata()
    script2, div2 = plotdata2()
    html = render_template('teacher_details.html',
                           script=script, div1=div1,
                           script2=script2, div2=div2,
                           js_resources=js_resources,
                           css_resources=css_resources,
                           )

    return encode_utf8(html)
Esempio n. 2
0
                    help='eval batch size')
parser.add_argument('--seed', type=int, default=1234, help='set random seed')
parser.add_argument('--cuda', action='store_true', help='use CUDA device')
parser.add_argument('--gpu_id', type=int, help='GPU device id used')

args = parser.parse_args()

if args.model_type == 'baseline':
    # data preprocess and prepare
    data_path = './data/dev.txt'
    split_ratio = 0.3
    preprocess(data_path, split_ratio)

    # dataset load and plot
    train_dataset = EmojiDataset('./data/Xtrain.npy', './data/ytrain.npy')
    plotdata(np.load('./data/Xtrain.npy', allow_pickle=True),
             np.load('./data/ytrain.npy', allow_pickle=True))
    test_dataset = EmojiDataset('./data/Xtest.npy', './data/ytest.npy')
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=args.train_batch_size,
                                  shuffle=False,
                                  collate_fn=collate_fn)
    test_dataloader = DataLoader(test_dataset,
                                 batch_size=args.eval_batch_size,
                                 shuffle=False,
                                 collate_fn=collate_fn)

    torch.manual_seed(args.seed)

    # model prepare
    use_gpu = False
Esempio n. 3
0
def graph():
    # graph 그리는 부분
    from data import plotdata
    script, div = plotdata()
    return render_template('graph.html',script=script, div=div)