print(args) if args.custom_img: output_path = join('output', args.experiment_name, 'custom_testing') from data import Custom test_dataset = Custom(args.custom_data, args.custom_attr, args.img_size, 'test', args.attrs) else: output_path = join('output', args.experiment_name, 'sample_testing') if args.data == 'CelebA': from data import CelebA test_dataset = CelebA(args.data_path, args.attr_path, args.img_size, 'test', args.attrs) if args.data == 'CelebA-HQ': from data import CelebA_HQ test_dataset = CelebA_HQ(args.data_path, args.attr_path, args.image_list_path, args.img_size, 'test', args.attrs) os.makedirs(output_path, exist_ok=True) test_dataloader = data.DataLoader( test_dataset, batch_size=1, num_workers=args.num_workers, shuffle=False, drop_last=False ) if args.num_test is None: print('Testing images:', len(test_dataset)) else: print('Testing images:', min(len(test_dataset), args.num_test)) attgan = AttGAN(args) attgan.load(find_model(join('output', args.experiment_name, 'checkpoint'), args.load_epoch)) progressbar = Progressbar()
os.makedirs(join('output', args.experiment_name, 'checkpoint'), exist_ok=True) os.makedirs(join('output', args.experiment_name, 'sample_training'), exist_ok=True) with open(join('output', args.experiment_name, 'setting.txt'), 'w') as f: f.write(json.dumps(vars(args), indent=4, separators=(',', ':'))) if args.data == 'CelebA': from data import CelebA train_dataset = CelebA(args.data_path, args.attr_path, args.img_size, 'train', args.attrs) valid_dataset = CelebA(args.data_path, args.attr_path, args.img_size, 'valid', args.attrs) if args.data == 'CelebA-HQ': from data import CelebA_HQ train_dataset = CelebA_HQ(args.data_path, args.attr_path, args.image_list_path, args.img_size, 'train', args.attrs) valid_dataset = CelebA_HQ(args.data_path, args.attr_path, args.image_list_path, args.img_size, 'valid', args.attrs) train_dataloader = data.DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True, drop_last=True) valid_dataloader = data.DataLoader(valid_dataset, batch_size=args.n_samples, num_workers=args.num_workers, shuffle=False, drop_last=False) print('Training images:', len(train_dataset), '/', 'Validating images:',