def exp(net, model_name, attack, test_dataset, device): original_net = None image_size = (128, 128) if model_name == 'baseline': original_net = BaseCNN() elif model_name == 'nvidia': original_net = Nvidia() elif model_name == 'vgg16': original_net = Vgg16() original_net.load_state_dict(torch.load(model_name + '.pt')) original_net = original_net.to(device) original_net.eval() # print(ast_ori, ast_dist) test_y = pd.read_csv('ch2_final_eval.csv')['steering_angle'].values test_composed = transforms.Compose( [Rescale(image_size), Preprocess('baseline'), ToTensor()]) test_dataset = UdacityDataset(dataset_path, ['testing'], test_composed, 'test') test_generator = DataLoader(test_dataset, batch_size=64, shuffle=False) target = 0.3 ast_ori, _ = fgsm_ex(test_generator, original_net, model_name, target, device, len(test_dataset)) ast_dist, _ = fgsm_ex(test_generator, net, model_name, target, device, len(test_dataset)) print('fgsm:', ast_ori, ast_dist) advt_model = model_name + '_' + attack ast_ori, _ = advGAN_ex(test_generator, original_net, model_name, target, device, len(test_dataset)) ast_dist, _ = advGAN_ex(test_generator, net, advt_model, target, device, len(test_dataset)) print('advGAN:', ast_ori, ast_dist) advt_model = model_name + '_' + attack ast_ori, _ = advGAN_uni_ex(test_generator, original_net, model_name, target, device, len(test_dataset)) ast_dist, _ = advGAN_uni_ex(test_generator, net, advt_model, target, device, len(test_dataset)) print('advGAN_uni:', ast_ori, ast_dist) advt_model = model_name + '_' + attack ast_ori, _ = opt_uni_ex(test_generator, original_net, model_name, target, device, len(test_dataset)) ast_dist, _ = opt_uni_ex(test_generator, net, advt_model, target, device, len(test_dataset)) print('opt_uni:', ast_ori, ast_dist) ast_ori, _ = opt_ex(test_dataset, original_net, model_name, target, device, len(test_dataset)) ast_dist, _ = opt_ex(test_dataset, net, model_name, target, device, len(test_dataset)) print('opt:', ast_ori, ast_dist)
def setup(bert_model, model_path, stage, squad_path, bert_path): log = logging.getLogger(__name__) file = Path('.setup').open('a+') file.seek(0, 0) if bert_model in (file.readline().split()): file.close() log.info(f'Setup: {bert_model} setup already performed') return file.write(f' {bert_model} ') file.close() log.info(f'Setup: downloading {bert_model}') BertModel.from_pretrained(bert_model).save_pretrained(model_path / stage / bert_model) log.info(f'Setup: preprocessing {bert_model} input') for x in squad_path.iterdir(): if x.is_file(): dataset = Preprocess(squad_path / x.name, bert_model) dataset.save(bert_path / bert_model / x.name[11:-5]) log.info(f'Setup: {bert_model} setup completed')
def cal_detection_rate(): for model_name in ['baseline', 'nvidia', 'vgg16']: # model_name = 'vgg16' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if 'baseline' in model_name: net = BaseCNN() elif 'nvidia' in model_name: net = Nvidia() elif 'vgg16' in model_name: net = Vgg16(False) net.load_state_dict(torch.load(model_name + '.pt')) net.eval() net = net.to(device) dataset_path = '../udacity-data' root_dir = dataset_path test_composed = transforms.Compose([Rescale((128, 128)), Preprocess('baseline'), ToTensor()]) image_size = (128, 128) full_dataset = UdacityDataset(root_dir, ['testing'], test_composed, type_='test') full_indices = list(range(5614)) test_indices = list(np.random.choice(5614, int(0.2*5614), replace=False)) train_indices = list(set(full_indices).difference(set(test_indices))) train_dataset = torch.utils.data.Subset(full_dataset, train_indices) test_dataset = torch.utils.data.Subset(full_dataset, test_indices) test_data_loader = DataLoader(full_dataset, batch_size=1, shuffle=False) num_sample = len(full_dataset) target = 0.3 # attack_detection(model_name, net, test_data_loader, attack='fgsm') # attack_detection(model_name, net, test_data_loader, attack='advGAN') # attack_detection(model_name, net, test_data_loader, attack='advGAN_uni') # attack_detection(model_name, net, test_data_loader, attack='opt_uni') # attack_detection(model_name, net, test_data_loader, attack='opt') print('threshold', 0.01) attack_detection(model_name, net, test_data_loader, attack='fgsm', threshold=0.01) attack_detection(model_name, net, test_data_loader, attack='advGAN', threshold=0.01) attack_detection(model_name, net, test_data_loader, attack='advGAN_uni', threshold=0.01) attack_detection(model_name, net, test_data_loader, attack='opt_uni', threshold=0.01) attack_detection(model_name, net, test_data_loader, attack='opt', threshold=0.01)
def ex3_gen_adv(generator, gen_model, device): root_dir = '../udacity-data' adv_root_dir = '../udacity-data/adv_data' device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") image_size = (128, 128) test_composed = transforms.Compose([Rescale(image_size), Preprocess(), ToTensor()]) basecnn = 'baseline.pt' nvidia = 'nvidia.pt' vgg16 = 'vgg16.pt' model1 = BaseCNN() model1.to(device) model1.load_state_dict(torch.load(basecnn)) model1.eval() model2 = Nvidia() model2.to(device) model2.load_state_dict(torch.load(nvidia)) model2.eval() model3 = Vgg16() model3.to(device) model3.load_state_dict(torch.load(vgg16)) model3.eval() target_models = [] target_models.append(('baseline', model1)) #target_models.append(('nvidia', model2)) target_models.append(('vgg16', model3)) train = 0 attacks = ['advGAN_attack'] # attacks = ['fgsm_attack', 'universal_attack', 'advGAN_attack', 'advGAN_universal_attack', 'opt_attack',] target = 0.3 if train: hmb_list =[('HMB1', 1479424215880976321),('HMB2', 1479424439139199216),('HMB4', 1479425729831388501), ('HMB5', 1479425834048269765), ('HMB6', 1479426202229245710)] else: hmb_list = [('testing', 1479425441182877835)] # for (model_name, model) in target_models: # noise_u = np.load(model_name + '_universal_attack_noise.npy') # noise_u = torch.from_numpy(noise_u).type(torch.FloatTensor).to(device) # advGAN_generator = Generator(3,3, model_name).to(device) # advGAN_uni_generator = Generator(3,3, model_name).to(device) # advGAN_generator.load_state_dict(torch.load('./models/' + model_name + '_netG_epoch_60.pth')) # advGAN_uni_generator.load_state_dict(torch.load('./models/' + model_name + '_universal_netG_epoch_60.pth')) # noise_seed = np.load(model_name + '_noise_seed.npy') # noise_a = advGAN_uni_generator(torch.from_numpy(noise_seed).type(torch.FloatTensor).to(device)) # save_dir = os.path.join(adv_root_dir, model_name) for (model_name, model) in target_models: noise_u = np.load(model_name + '_universal_attack_noise.npy') noise_u = torch.from_numpy(noise_u).type(torch.FloatTensor).to(device) advGAN_generator = Generator(3,3, model_name).to(device) advGAN_uni_generator = Generator(3,3, model_name).to(device) advGAN_generator.load_state_dict(torch.load('./models/' + model_name + '_netG_epoch_60.pth')) advGAN_generator.eval() advGAN_uni_generator.load_state_dict(torch.load('./models/' + model_name + '_universal_netG_epoch_60.pth')) advGAN_uni_generator.eval() noise_seed = np.load(model_name + '_noise_seed.npy') noise_a = advGAN_uni_generator(torch.from_numpy(noise_seed).type(torch.FloatTensor).to(device)) save_dir = os.path.join(adv_root_dir, model_name) for (hmb, start) in hmb_list: print(model_name ,hmb) if train: train_dataset = UdacityDataset(root_dir, [hmb], test_composed, type_='train') else: train_dataset = UdacityDataset(root_dir, [hmb], test_composed, type_='test') generator = DataLoader(train_dataset, batch_size=64, shuffle=False, num_workers=8) for i, batch in enumerate(generator): batch_x = batch['image'] batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) _, plt, _, perturbed_image = attack_test.fgsm_attack_test(model, batch_x, target, device, image_size=image_size) plt.close() if train: for j in range(len(perturbed_image)): np.save('../udacity-data/adv_data/' + model_name + '/fgsm_attack/' + hmb + '/' + str(i*64 + start + j), perturbed_image[j,:,:,:]) else: np.save('../udacity-data/adv_testing/' + model_name + '/fgsm_attack/' + hmb + '/npy/' + 'batch_' + str(i), perturbed_image) _, plt, perturbed_image = attack_test.optimized_uni_test(model, batch_x, device, noise_u, image_size=image_size) plt.close() if train: for j in range(len(perturbed_image)): np.save('../udacity-data/adv_data/' + model_name + '/universal_attack/' + hmb + '/' + str(i*64 + start + j), perturbed_image[j,:,:,:]) else: np.save('../udacity-data/adv_testing/' + model_name + '/universal_attack/' + hmb + '/npy/' + 'batch_' + str(i), perturbed_image) _, plt, perturbed_image = attack_test.advGAN_test(model, batch_x, advGAN_generator, device, image_size=image_size) plt.close() if train: for j in range(len(perturbed_image)): np.save('../udacity-data/adv_data/' + model_name + '/advGAN_attack/' + hmb + '/' + str(i*64 + start + j), perturbed_image[j,:,:,:]) else: np.save('../udacity-data/adv_testing/' + model_name + '/advGAN_attack/' + hmb + '/npy/' + 'batch_' + str(i), perturbed_image) _, plt, perturbed_image = attack_test.advGAN_uni_test(model, batch_x, device, noise_a, image_size=image_size) plt.close() if train: for j in range(len(perturbed_image)): np.save('../udacity-data/adv_data/' + model_name + '/advGAN_universal_attack/' + hmb + '/' + str(i*64 + start + j), perturbed_image[j,:,:,:]) else: np.save('../udacity-data/adv_testing/' + model_name + '/advGAN_universal_attack/' + hmb + '/npy/' + 'batch_' + str(i), perturbed_image) for (model_name, model) in target_models: for (hmb, start) in hmb_list: print(model_name, hmb) if train: train_dataset = UdacityDataset(root_dir, [hmb], test_composed, type_='train') else: train_dataset = UdacityDataset(root_dir, [hmb], test_composed, type_='test') # npy = np.array([], dtype=np.float64).reshape(1, 3, 128, 128) npy = None for i in range(0, len(train_dataset)): batch_x = train_dataset[i]['image'] batch_x = batch_x.unsqueeze(0) batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) _, plt, perturbed_image = attack_test.optimized_attack_test(model, batch_x, target, device, image_size=image_size) plt.close() if train: for j in range(len(perturbed_image)): np.save('../udacity-data/adv_data/' + model_name + '/opt_attack/' + hmb + '/' + str(i*64 + start + j), perturbed_image[j,:,:,:]) else: if i == 0: npy = perturbed_image elif i % 64 != 0: npy = np.concatenate((npy, perturbed_image)) else: np.save('../udacity-data/adv_testing/' + model_name + '/opt_attack/' + hmb + '/npy/' + 'batch_' + str(i // 64 - 1), npy) npy = perturbed_image if not train: np.save('../udacity-data/adv_testing/' + model_name + '/opt_attack/' + hmb + '/npy/' + 'batch_' + str(5614 // 64), npy)
def experiment_1(): device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") target_models = [] basecnn = 'baseline.pt' nvidia = 'nvidia.pt' vgg16 = 'vgg16.pt' model1 = BaseCNN() model1.to(device) model1.load_state_dict(torch.load(basecnn)) model1.eval() model2 = Nvidia() model2.to(device) model2.load_state_dict(torch.load(nvidia)) model2.eval() model3 = Vgg16() model3.to(device) model3.load_state_dict(torch.load(vgg16)) model3.eval() target_models.append(('baseline', model1)) # target_models.append(('vgg16', model3)) # target_models.append(('nvidia', model2)) root_dir = '../udacity-data' target = 0.3 attacks = ('FGSM', 'Optimization', 'Optimization Universal', 'AdvGAN', 'AdvGAN Universal') fgsm_result = [] opt_result = [] optu_result = [] advGAN_result = [] advGANU_result = [] fgsm_diff = [] opt_diff = [] optu_diff = [] advGAN_diff = [] advGANU_diff = [] # models = ('baseline') full_indices = list(range(5614)) test_indices = list(np.random.choice(5614, int(0.2*5614), replace=False)) train_indices = list(set(full_indices).difference(set(test_indices))) image_size = (128, 128) # if model_name == 'baseline': # image_size = (128, 128) # elif model_name == 'nvidia': # image_size = (66, 200) # elif model_name == 'vgg16': # image_size = (224, 224) test_composed = transforms.Compose([Rescale((image_size[1],image_size[0])), Preprocess(), ToTensor()]) # train_dataset = UdacityDataset(root_dir, ['HMB1', 'HMB2', 'HMB4'], test_composed, type_='train') full_dataset = UdacityDataset(root_dir, ['testing'], test_composed, type_='test') train_dataset = torch.utils.data.Subset(full_dataset, train_indices) test_dataset = torch.utils.data.Subset(full_dataset, test_indices) for (model_name, model) in target_models: # train_size = int(0.8*len(full_dataset)) # test_size =len(full_dataset) - train_size test_data_loader = torch.utils.data.DataLoader(full_dataset,batch_size=64,shuffle=False) num_sample = len(full_dataset) # universal perturbation generation if not os.path.exists(model_name + '_universal_attack_noise.npy'): print('Start universal attack training') perturbation = generate_noise(train_dataset, model, model_name, device, target) np.save(model_name + '_universal_attack_noise', perturbation) print('Finish universal attack training.') # # advGAN training if not os.path.exists('./models/' + model_name + '_netG_epoch_60.pth'): print('Start advGAN training') advGAN = advGAN_Attack(model_name, model_name + '.pt', target + 0.2, train_dataset) torch.save(advGAN.netG.state_dict(), './models/' + model_name +'_netG_epoch_60.pth') print('Finish advGAN training') # # advGAN_uni training if not os.path.exists('./models/' + model_name + '_universal_netG_epoch_60.pth'): print('Start advGAN_uni training') advGAN_uni = advGAN_Attack(model_name, model_name + '.pt', target + 0.2, train_dataset, universal=True) advGAN_uni.save_noise_seed(model_name + '_noise_seed.npy') torch.save(advGAN_uni.netG.state_dict(), './models/' + model_name +'_universal_netG_epoch_60.pth') print('Finish advGAN_uni training') print("Testing: " + model_name) #fgsm attack fgsm_ast, diff = fgsm_ex(test_data_loader, model, model_name, target, device, num_sample, image_size) print(fgsm_ast) fgsm_result.append(fgsm_ast) fgsm_diff.append(diff) # # optimization attack opt_ast, diff = opt_ex(test_dataset, model, model_name, target, device, num_sample, image_size) print(opt_ast) opt_result.append(opt_ast) opt_diff.append(diff) # optimized-based universal attack optu_ast, diff = opt_uni_ex(test_data_loader, model, model_name, target, device, num_sample, image_size) print(optu_ast) optu_result.append(optu_ast) optu_diff.append(diff) # advGAN attack advGAN_ast, diff = advGAN_ex(test_data_loader, model, model_name, target, device, num_sample, image_size) print(advGAN_ast) advGAN_result.append(advGAN_ast) advGAN_diff.append(diff) # advGAN_universal attack advGANU_ast, diff = advGAN_uni_ex(test_data_loader, model, model_name, target, device, num_sample, image_size) print(advGANU_ast) advGANU_result.append(advGANU_ast) advGANU_diff.append(diff)
def ex2_fun(gen_model, test_model, device): full_indices = list(range(5614)) test_indices = list(np.random.choice(5614, int(0.2*5614), replace=False)) root_dir = '../udacity-data' (gen_model_name, gen_net) = gen_model (test_model_name, test_net) = test_model image_size = (128, 128) # gen_image_size =None # if gen_model_name == 'baseline': # gen_image_size = (128, 128) # elif gen_model_name == 'nvidia': # gen_image_size = (66, 200) # elif gen_model_name == 'vgg16': # gen_image_size = (224, 224) # test_image_size =None # if test_model_name == 'baseline': # test_image_size = (128, 128) # elif test_model_name == 'nvidia': # test_image_size = (66, 200) # elif test_model_name == 'vgg16': # test_image_size = (224, 224) composed = transforms.Compose([Rescale((image_size[1],image_size[0])), Preprocess(), ToTensor()]) # test_composed = transforms.Compose([Rescale((test_image_size[1],test_image_size[0])), Preprocess(), ToTensor()]) # train_dataset = UdacityDataset(root_dir, ['HMB1', 'HMB2', 'HMB4'], test_composed, type_='train') full_dataset = UdacityDataset(root_dir, ['testing'], composed, type_='test') # dataset = torch.utils.data.Subset(full_dataset, test_indices) dataset = full_dataset # full_dataset = UdacityDataset(root_dir, ['testing'], test_composed, type_='test') # test_dataset = torch.utils.data.Subset(full_dataset, test_indices) # test_generator = DataLoader(test_dataset, batch_size=1, shuffle=False) adv_root_path = '../udacity-data/adv_testing/' target = 0.3 success = [] attacks = ('fgsm_attack', 'opt_attack', 'universal_attack', 'advGAN_attack', 'advGAN_universal_attack') noise_u = np.load(gen_model_name + '_universal_attack_noise.npy') noise_u = torch.from_numpy(noise_u).type(torch.FloatTensor).to(device) advGAN_generator = Generator(3,3, gen_model_name).to(device) advGAN_uni_generator = Generator(3,3, gen_model_name).to(device) advGAN_generator.load_state_dict(torch.load('./models/' + gen_model_name + '_netG_epoch_60.pth')) advGAN_uni_generator.load_state_dict(torch.load('./models/' + gen_model_name + '_universal_netG_epoch_60.pth')) noise_seed = np.load(gen_model_name + '_noise_seed.npy') noise_a = advGAN_generator(torch.from_numpy(noise_seed).type(torch.FloatTensor).to(device)) for attack in attacks: total_diff = np.array([]) adv_test_path = adv_root_path + gen_model_name + '/' + attack + '/testing/npy/' data_loader = iter(DataLoader(full_dataset, batch_size=64, shuffle=False)) for i in range(88): adv_image = np.load(adv_test_path + 'batch_' + str(i) + '.npy') adv_image = torch.from_numpy(adv_image) adv_image = adv_image.type(torch.FloatTensor) adv_image = adv_image.to(device) ori_image = next(data_loader)['image'] ori_image = ori_image.type(torch.FloatTensor) ori_image = ori_image.to(device) ori_y = test_net(ori_image) adv_y = test_net(adv_image) diff = (adv_y - ori_y).detach().cpu().numpy() diff = np.squeeze(diff) total_diff = np.concatenate((total_diff, diff)) success_ = len(total_diff[abs(total_diff) >= target]) print(np.mean(total_diff)) print('test ' + gen_model_name + ' ' + attack + ' adv_image on ' + test_model_name + ' model:', success_ / 5614) success.append(success_ / 5614) # print(len(gen_dataset)) #for i in range(len(dataset)): # for i in range(88): # #print(i) # # gen_x = dataset[i]['image'] # # gen_x = gen_x.unsqueeze(0) # # gen_x = gen_x.type(torch.FloatTensor) # # gen_x = gen_x.to(device) # # test_x = dataset[i]['image'] # # test_x = test_x.unsqueeze(0) # # test_x = test_x.type(torch.FloatTensor) # # test_x = test_x.to(device) # # test_x.unsqueeze(0) # test_y_pred = test_net(test_x) # # fgsm # _, plt, _, perturbed_image = attack_test.fgsm_attack_test(gen_net, gen_x, target, device, image_size=image_size) # # perturbed_image = perturbed_image[0,:,:,:] # #imsave('experiment_result/experiment_2/' + gen_model_name + '/fgsm_attack/' + str(i+1479425441182877835) + '.jpg', perturbed_image) # plt.close() # # perturbed_image_resize = cv2.resize(perturbed_image, (test_image_size[1], test_image_size[0])) # perturbed_image = torch.from_numpy(perturbed_image).type(torch.FloatTensor).to(device) # test_y_adv = test_net(perturbed_image) # # print(test_y_pred.item(), test_y_adv.item()) # if abs(test_y_adv.item() - test_y_pred.item()) >= target: # success[0] += 1 # _, plt, perturbed_image = attack_test.optimized_attack_test(gen_net, gen_x, target, device, image_size=image_size) # #perturbed_image = perturbed_image[0,:,:,:] # #imsave('experiment_result/experiment_2/' + gen_model_name + '/opt_attack/' + str(i+1479425441182877835) + '.jpg', perturbed_image) # plt.close() # perturbed_image = torch.from_numpy(perturbed_image).type(torch.FloatTensor).to(device) # test_y_adv = test_net(perturbed_image) # if abs(test_y_adv.item() - test_y_pred.item()) >= target: # success[1] += 1 # _, plt, perturbed_image = attack_test.optimized_uni_test(gen_net, gen_x, device, noise_u, image_size=image_size) # #perturbed_image = perturbed_image[0,:,:,:] # #imsave('experiment_result/experiment_2/' + gen_model_name + '/universal_attack/' + str(i+1479425441182877835) + '.jpg', perturbed_image) # plt.close() # perturbed_image = torch.from_numpy(perturbed_image).type(torch.FloatTensor).to(device) # test_y_adv = test_net(perturbed_image) # if abs(test_y_adv.item() - test_y_pred.item()) >= target: # success[2] += 1 # _, plt, perturbed_image = attack_test.advGAN_test(gen_net, gen_x, advGAN_generator, device, image_size=image_size) # #perturbed_image = perturbed_image[0,:,:,:] # #imsave('experiment_result/experiment_2/' + gen_model_name + '/advGAN_attack/' + str(i+1479425441182877835) + '.jpg', perturbed_image) # plt.close() # perturbed_image = torch.from_numpy(perturbed_image).type(torch.FloatTensor).to(device) # test_y_adv = test_net(perturbed_image) # if abs(test_y_adv.item() - test_y_pred.item()) >= target: # success[3] += 1 # _, plt, perturbed_image = attack_test.advGAN_uni_test(gen_net, gen_x, device, noise_a, image_size=image_size) # #perturbed_image = perturbed_image[0,:,:,:] # #imsave('experiment_result/experiment_2/' + gen_model_name + '/advGAN_universal_attack/' + str(i+1479425441182877835) + '.jpg', perturbed_image) # plt.close() # perturbed_image = torch.from_numpy(perturbed_image).type(torch.FloatTensor).to(device) # test_y_adv = test_net(perturbed_image) # if abs(test_y_adv.item() - test_y_pred.item()) >= target: # success[4] += 1 # print('test ' + gen_model_name + ' adv_image on ' + test_model_name + ' model:', [s/len(full_dataset) for s in success]) return success
# adv_output_advGAN_U = model(perturbed_image_advGAN_U) # perturbed_image_advGAN_U = perturbed_image_advGAN_U.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) # noise_advGAN_U = noise_advGAN_U.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) # perturbed_image_advGAN_U = draw(perturbed_image_advGAN_U, adv_output_advGAN_U.item(), output.item()) # perturbed_image_advGAN_U = imresize(perturbed_image_advGAN_U, (128, 128)) # for i, sample in enumerate(test_dataset): # batch_size = sample['image'].size(0) # noise_seed = np.load(model_name + '_noise_seed.npy') # noise_seed = np.tile(noise_seed, (batch_size, 1, 1, 1)) # noise = advGAN_generator(torch.from_numpy(noise_seed).type(torch.FloatTensor).to(device)) dataset_path = '../udacity-data' test_composed = transforms.Compose( [Rescale((128, 128)), Preprocess('baseline'), ToTensor()]) test_dataset = UdacityDataset(dataset_path, ['testing'], test_composed, 'test') test_generator = DataLoader(test_dataset, batch_size=1, shuffle=False) # t0 = time.time() # for _, sample_batched in enumerate(test_generator): # batch_x = sample_batched['image'] # # print(batch_x.size()) # # print(batch_x.size()) # # print(batch_y) # batch_x = batch_x.type(torch.FloatTensor)
net = Nvidia() elif model_name == 'vgg16': net = Vgg16() net.apply(weight_init) net = net.to(device) # net.to(device) if train != 0: if train == 2: net.load_state_dict(torch.load(model_name + '.pt')) composed = transforms.Compose([ Rescale(image_size), RandFlip(), RandRotation(), Preprocess(model_name), ToTensor() ]) dataset = UdacityDataset(dataset_path, ['HMB1', 'HMB2', 'HMB4', 'HMB5', 'HMB6'], composed) steps_per_epoch = int(len(dataset) / batch_size) train_generator = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=8) criterion = nn.L1Loss() # criterion = nn.MSELoss() if model_name == 'vgg16': optimizer = optim.Adam(net.parameters(), lr=lr)
def test_on_gen(net, model_name, dataset_path, attack, device): original_net = None if model_name == 'baseline': original_net = BaseCNN() elif model_name == 'nvidia': original_net = Nvidia() elif model_name == 'vgg16': original_net = build_vgg16(False) original_net.load_state_dict(torch.load(model_name + '.pt')) original_net = original_net.to(device) original_net.eval() test_y = pd.read_csv('ch2_final_eval.csv')['steering_angle'].values test_composed = transforms.Compose( [Rescale(image_size), Preprocess('baseline'), ToTensor()]) test_dataset = UdacityDataset(dataset_path, ['testing'], test_composed, 'test') test_generator = DataLoader(test_dataset, batch_size=1, shuffle=False) with torch.no_grad(): # test on original dataset yhat = [] y_original = [] # test_y = [] for _, sample_batched in enumerate(test_generator): batch_x = sample_batched['image'] batch_y = sample_batched['steer'] batch_x = batch_x.type(torch.FloatTensor) batch_y = batch_y.type(torch.FloatTensor) batch_x = batch_x.to(device) batch_y = batch_y.to(device) output = net(batch_x) output_ori = original_net(batch_x) # print(output.item(), batch_y.item()) yhat.append(output.item()) y_original.append(output_ori.item()) yhat = np.array(yhat) y_original = np.array(y_original) rmse = np.sqrt(np.mean((yhat - test_y)**2)) rmse_ori = np.sqrt(np.mean((y_original - test_y)**2)) print('adv model on ori dataset:', rmse, 'ori model on ori dataset: ', rmse_ori) plt.figure(figsize=(32, 8)) plt.plot(test_y, 'r.-', label='target') plt.plot(yhat, 'b^-', label='predict') plt.legend(loc='best') plt.title("RMSE: %.2f" % rmse) # plt.show() model_fullname = "%s_%d.png" % (model_name + '_' + attack, int(time.time())) plt.savefig(model_fullname) test_generator = DataLoader(test_dataset, batch_size=64, shuffle=False) target = 0.3 # test adv_training model on adv images generated based on itself # ast_ori, _ = fgsm_ex(test_generator, original_net, 'baseline', target, device, len(test_dataset)) # ast_dist,_ = fgsm_ex(test_generator, net, 'baseline', target, device, len(test_dataset)) # print(ast_ori, ast_dist) success = 0 success_ = 0 # test adv_training model on adv images generated based on original model for _, sample_batched in enumerate(test_generator): batch_x = sample_batched['image'] batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) y_pred = net(batch_x) y_pred_ori = original_net(batch_x) # fgsm_attack adv_x = fgsm_attack_(original_net, batch_x, target, device) y_fgsm = net(adv_x) y_ori_fgsm = original_net(adv_x) diff = abs(y_fgsm - y_pred) success += len(diff[diff >= abs(target)]) diff = abs(y_ori_fgsm - y_pred_ori) success_ += len(diff[diff >= abs(target)]) print('fgsm', success / len(test_dataset), success_ / len(test_dataset)) # opt attack # success = 0 # success_ = 0 # for _,sample_batched in enumerate(test_dataset): # batch_x = sample_batched['image'] # batch_x = batch_x.type(torch.FloatTensor) # batch_x = batch_x.unsqueeze(0) # batch_x = batch_x.to(device) # y_pred = net(batch_x) # y_pred_ori = original_net(batch_x) # # fgsm_attack # # adv_x = fgsm_attack_(original_net, batch_x, target, device) # adv_x,_,_,_ = optimized_attack(original_net, target, batch_x) # y_fgsm = net(adv_x) # y_ori_fgsm = original_net(adv_x) # diff = abs(y_fgsm - y_pred) # success += len(diff[diff >= abs(target)]) # diff = abs(y_ori_fgsm - y_pred_ori) # success_ += len(diff[diff >= abs(target)]) # print('opt', success / len(test_dataset), success_ / len(test_dataset)) # opt universal attack noise_u = np.load(model_name + '_universal_attack_noise.npy') noise_u = torch.from_numpy(noise_u).type(torch.FloatTensor).to(device) success = 0 success_ = 0 for _, sample_batched in enumerate(test_generator): batch_x = sample_batched['image'] batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) y_pred = net(batch_x) y_pred_ori = original_net(batch_x) # adv_x = fgsm_attack_(original_net, batch_x, target, device) # noise = advGAN_generator(batch_x) perturbed_image = batch_x + noise_u adv_x = torch.clamp(perturbed_image, 0, 1) y_fgsm = net(adv_x) y_ori_fgsm = original_net(adv_x) diff = abs(y_fgsm - y_pred) success += len(diff[diff >= abs(target)]) diff = abs(y_ori_fgsm - y_pred_ori) success_ += len(diff[diff >= abs(target)]) print('opt uni', success / len(test_dataset), success_ / len(test_dataset)) # test for advGAN attack success = 0 success_ = 0 advGAN_generator = Generator(3, 3, model_name).to(device) advGAN_generator.load_state_dict( torch.load('./models/' + model_name + '_netG_epoch_60.pth')) for _, sample_batched in enumerate(test_generator): batch_x = sample_batched['image'] batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) y_pred = net(batch_x) y_pred_ori = original_net(batch_x) # adv_x = fgsm_attack_(original_net, batch_x, target, device) noise = advGAN_generator(batch_x) perturbed_image = batch_x + torch.clamp(noise, -0.3, 0.3) adv_x = torch.clamp(perturbed_image, 0, 1) y_fgsm = net(adv_x) y_ori_fgsm = original_net(adv_x) diff = abs(y_fgsm - y_pred) success += len(diff[diff >= abs(target)]) diff = abs(y_ori_fgsm - y_pred_ori) success_ += len(diff[diff >= abs(target)]) print('advGAN', success / len(test_dataset), success_ / len(test_dataset)) # test for advGAN uni attack advGAN_uni_generator = Generator(3, 3, model_name).to(device) advGAN_uni_generator.load_state_dict( torch.load('./models/' + model_name + '_universal_netG_epoch_60.pth')) noise_seed = np.load(model_name + '_noise_seed.npy') noise_a = advGAN_uni_generator( torch.from_numpy(noise_seed).type(torch.FloatTensor).to(device)) success = 0 success_ = 0 for _, sample_batched in enumerate(test_generator): batch_x = sample_batched['image'] batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) y_pred = net(batch_x) y_pred_ori = original_net(batch_x) # adv_x = fgsm_attack_(original_net, batch_x, target, device) # noise = advGAN_generator(batch_x) perturbed_image = batch_x + torch.clamp(noise_a, -0.3, 0.3) adv_x = torch.clamp(perturbed_image, 0, 1) y_fgsm = net(adv_x) y_ori_fgsm = original_net(adv_x) diff = abs(y_fgsm - y_pred) success += len(diff[diff >= abs(target)]) diff = abs(y_ori_fgsm - y_pred_ori) success_ += len(diff[diff >= abs(target)]) print('advGAN uni', success / len(test_dataset), success_ / len(test_dataset))
cuda.In(np.array(front.shape).astype(np.int32)), cuda.In(np.array(buf.shape).astype(np.int32)), block=(3, 1, 1), # channel grid=(1, 1, 1) # points ) front /= weight_mask[:, :, np.newaxis] return front if __name__ == '__main__': import time import random import numpy as np from data import lidar_to_top, Preprocess pro = Preprocess() import pycuda.autoinit lidar = np.fromfile( '/home/maxiaojian/data/kitti/object/training/velodyne/007480.bin', dtype=np.float32) lidar = lidar.reshape((-1, 4)) t0 = time.time() top = lidar_to_top_cuda(lidar) t1 = time.time() print('done top, {}'.format(t1 - t0)) top_gt = lidar_to_top(lidar) t2 = time.time() print('done top cpu, {}'.format(t2 - t1)) assert (top.shape == top_gt.shape)
import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA from sklearn.model_selection import cross_val_score, cross_validate from sklearn.model_selection import KFold from sklearn.pipeline import Pipeline from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier from data import Preprocess p = Preprocess() data = p.get_data() #Dropping cons.price.index outliers cons_index, cons_value = p.find_outliers_tukey(data["cons.price.idx"]) data = data.drop(cons_index) #replacing duration outliers with maximum value max_ = data['duration'].max() data['duration'] = np.where(data.duration > 645,max_,data['duration']) #replacing campaign outliers with maximum value max_ = data['campaign'].max() data['campaign'] = np.where(data.campaign > 7, max_,data['campaign']) #handling invalid data invalid_data = ['job','education','loan','housing','default','marital'] data = p.handle_invalid_data(data,invalid_data) #integer encoding
cuda.In(buf), cuda.In(np.array(front.shape).astype(np.int32)), cuda.In(np.array(buf.shape).astype(np.int32)), block=(3, 1, 1), # channel grid=(1, 1, 1) # points ) front /= weight_mask[:, :, np.newaxis] return front if __name__ == '__main__': import time import random import numpy as np from data import lidar_to_top, Preprocess pro = Preprocess() import pycuda.autoinit lidar = np.fromfile('/home/maxiaojian/data/kitti/object/training/velodyne/007480.bin', dtype=np.float32) lidar = lidar.reshape((-1, 4)) t0 = time.time() top = lidar_to_top_cuda(lidar) t1 = time.time() print('done top, {}'.format(t1-t0)) top_gt = lidar_to_top(lidar) t2 = time.time() print('done top cpu, {}'.format(t2-t1)) assert(top.shape == top_gt.shape) assert(np.sum(top[..., 0:25] != top_gt[..., 0:25]) == 0) assert(np.sum(top[..., 26] != top_gt[..., 26]) == 0)