def test(img_path, anno_path): # load net num_classes = len(labelmap) + 1 # +1 for background net = build_ssd('test', 300, num_classes) # initialize SSD net.load_state_dict( torch.load(args.trained_model, map_location=torch.device('cpu'))) net.eval() print('Finished loading model!') # load data dataset = SIXrayDetection(args.dataset_root, args.dataset, BaseTransform(300, dataset_mean), SIXrayAnnotationTransform(), test_set_path=(img_path, anno_path)) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.result_folder, net, args.cuda, dataset, BaseTransform(net.size, dataset_mean), args.top_k, 300, thresh=args.confidence_threshold)
def test(img_path, anno_path): # load net num_classes = len(SIXray_CLASSES) + 1 # +1 background net = build_ssd('test', 300, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model, map_location=torch.device('cpu'))) net.eval() # read and put into a file test_sets = [] for anno_file in os.listdir(anno_path): test_sets.append(anno_file.split('.')[0]) testset = SIXrayDetection(test_sets, None, SIXrayAnnotationTransform(), image_path=img_path, anno_path=anno_path) test_net(args.save_folder, net, args.cuda, testset, BaseTransform(net.size, (104, 117, 123)), thresh=args.visual_threshold)
def test_voc(): # load net num_classes = len(SIXray_CLASSES) + 1 # +1 background net = build_ssd('test', 300, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model,map_location=torch.device('cpu'))) net.eval() print('Finished loading model!') # load data test_sets = "./data/sixray/test_1650.txt" testset = SIXrayDetection(test_sets, None, SIXrayAnnotationTransform()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, testset, BaseTransform(net.size, (104, 117, 123)), thresh=args.visual_threshold)
def test_voc(): # load net num_classes = len(SIXray_CLASSES) + 1 # +1 background net = build_ssd('test', 300, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model)) net.eval() print('Finished loading model!') # load data testset = SIXrayDetection(args.sixray_root, [('core_3000', 'val'), ('coreless_3000', 'val')], None, SIXrayAnnotationTransform()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, testset, BaseTransform(net.size, (104, 117, 123)), thresh=args.visual_threshold)
def evaluate_detections(box_list, output_dir, dataset): write_voc_results_file(box_list, dataset) do_python_eval(output_dir) if __name__ == '__main__': # load net num_classes = len(labelmap) + 1 # +1 for background net = build_ssd('test', 300, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model)) net.eval() print('Finished loading model!') # load data dataset = SIXrayDetection(args.sixray_root, args.imagesetfile, BaseTransform(300, dataset_mean), SIXrayAnnotationTransform()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, dataset, BaseTransform(net.size, dataset_mean), args.top_k, 300, thresh=args.confidence_threshold)