Esempio n. 1
0
def demo_plt(img_id=0):
    net = build_ssd('test', 512, 11)  # initialize SSD
    print(net)
    net.load_weights(
        '/media/sunwl/Datum/Projects/GraduationProject/Fused_sum_SSD_VHR_512_conv3_3/weights/v2_vhr.pth'
    )
    testset = VHRDetection(VHRroot, ['test2'], None, AnnotationTransform_VHR)
    image = testset.pull_image(img_id)
    # image = cv2.imread('demos/047.jpg')
    rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    # View the sampled input image before transform
    plt.figure(figsize=(10, 10))
    plt.imshow(rgb_image)

    x = cv2.resize(rgb_image, (512, 512)).astype(np.float32)
    x -= (104.0, 117.0, 123.0)
    x = x.astype(np.float32)
    x = x[:, :, ::-1].copy()
    x = torch.from_numpy(x).permute(2, 0, 1)

    xx = Variable(x.unsqueeze(0))  # wrap tensor in Variable
    if torch.cuda.is_available():
        xx = xx.cuda()
    y = net(xx)
    #
    plt.figure(figsize=(10, 10))
    colors = plt.cm.hsv(np.linspace(0, 1, 11)).tolist()
    plt.imshow(rgb_image.astype(np.uint8))  # plot the image for matplotlib
    currentAxis = plt.gca()

    detections = y.data

    # scale each detection back up to the image
    scale = torch.Tensor(rgb_image.shape[1::-1]).repeat(2)
    for i in range(detections.size(1)):
        j = 0
        while detections[0, i, j, 0] >= 0.6:
            score = detections[0, i, j, 0]
            label_name = labels[i - 1]
            display_txt = '%s: %.2f' % (label_name, score)
            pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
            color = colors[i]
            coords = (pt[0], pt[1]), pt[2] - pt[0] + 1, pt[3] - pt[1] + 1
            currentAxis.add_patch(
                plt.Rectangle(*coords,
                              fill=False,
                              edgecolor=color,
                              linewidth=2))
            currentAxis.text(pt[0],
                             pt[1],
                             display_txt,
                             bbox={
                                 'facecolor': color,
                                 'alpha': 0.5
                             })
            j += 1
    plt.savefig(
        '/media/sunwl/Datum/Projects/GraduationProject/Fused_sum_SSD_VHR_512_conv3_3/outputs/vhr_{:03}.png'
        .format(img_id))
    plt.show()
Esempio n. 2
0
def demo_cv2(img_id=0):
    net = build_msc('test', 11)  # initialize SSD
    print(net)
    # net.load_weights('/media/sunwl/Datum/Projects/GraduationProject/Multi_Scale_CNN_512/weights/v2_vhr.pth')
    net.load_weights(
        '/media/sunwl/Datum/Projects/GraduationProject/Multi_Scale_CNN_512/weights/msc512_vhr_80000.pth'
    )
    testset = VHRDetection(VHRroot, ['test2'], None, AnnotationTransform_VHR)
    image = testset.pull_image(img_id)
    # image = cv2.imread('demos/089.jpg')
    rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    x = cv2.resize(rgb_image, (512, 512)).astype(np.float32)
    x -= (104.0, 117.0, 123.0)
    x = x.astype(np.float32)
    x = x[:, :, ::-1].copy()
    x = torch.from_numpy(x).permute(2, 0, 1)

    xx = Variable(x.unsqueeze(0))  # wrap tensor in Variable
    if torch.cuda.is_available():
        xx = xx.cuda()
    y = net(xx)
    colors = plt.cm.hsv(np.linspace(0, 1, 11)).tolist()
    detections = y.data

    # scale each detection back up to the image
    scale = torch.Tensor(rgb_image.shape[1::-1]).repeat(2)
    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2RGB)
    im2show = np.copy(bgr_image)
    for i in range(detections.size(1)):
        j = 0
        while detections[0, i, j, 0] >= 0.6:
            score = detections[0, i, j, 0]
            label_name = labels[i - 1]
            display_txt = '%s: %.2f' % (label_name, score)
            pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
            color = colors[i]
            color = [int(c * 255) for c in color[:3]]
            coords = pt[0], pt[1], pt[2], pt[3]
            cv2.rectangle(im2show,
                          coords[0:2],
                          coords[2:4],
                          color,
                          thickness=2)
            cv2.putText(im2show,
                        display_txt, (int(coords[0]), int(coords[1]) - 3),
                        cv2.FONT_HERSHEY_PLAIN,
                        1.0,
                        color,
                        thickness=1)
            j += 1
    cv2.imshow('original', bgr_image)
    cv2.imshow('demo', im2show)
    cv2.imwrite(
        os.path.join(
            '/media/sunwl/Datum/Projects/GraduationProject/Multi_Scale_CNN_512',
            "outputs", "{:03d}.jpg".format(img_id)), im2show)
    cv2.waitKey(0)