def __init__(self,
                 data_root,
                 img_size,
                 device,
                 transform,
                 labelmap,
                 set_type='test',
                 year='2007',
                 display=False):
        self.data_root = data_root
        self.img_size = img_size
        self.device = device
        self.transform = transform
        self.labelmap = labelmap
        self.set_type = set_type
        self.year = year
        self.display = display

        # path
        self.devkit_path = data_root + 'VOC' + year
        self.annopath = os.path.join(data_root, 'VOC2007', 'Annotations',
                                     '%s.xml')
        self.imgpath = os.path.join(data_root, 'VOC2007', 'JPEGImages',
                                    '%s.jpg')
        self.imgsetpath = os.path.join(data_root, 'VOC2007', 'ImageSets',
                                       'Main', set_type + '.txt')
        self.output_dir = self.get_output_dir('voc_eval/', self.set_type)

        # dataset
        self.dataset = VOCDetection(root=data_root,
                                    img_size=img_size[0],
                                    image_sets=[('2007', set_type)],
                                    transform=transform)
Esempio n. 2
0
def main(args):
    img_dim = 300
    set_type = 'test'
    use_voc_07_ap_metric = True

    data_iter = VOCDetection(args.data_root, [('2007', set_type)],
                             BaseTransform(img_dim, (104, 117, 123)),
                             AnnotationTransform())
    print('Using data iterator "{}"'.format(data_iter.__class__.__name__))
    num_classes = data_iter.num_classes()

    net = build_ssd('test', img_dim, num_classes)  # initialize SSD
    net.load_state_dict(torch.load(args.trained_model))
    net.eval()
    print('Finished loading model! {} Cuda'.format(
        'Using' if args.cuda else 'No'))

    if args.cuda:
        net = net.cuda()
        cudnn.benchmark = True
    eval_ssd(data_iter,
             net,
             args.save_path,
             cuda=args.cuda,
             use_voc_07=use_voc_07_ap_metric)
Esempio n. 3
0
def demo(img_id=0):
    net = build_ssd('test', 512, 21)  # initialize SSD
    print(net)
    net.load_weights(
        '/media/sunwl/Datum/Projects/GraduationProject/SSD_VHR_512/weights/ssd512_voc_resume_95000.pth'
    )
    testset = VOCDetection(VOCroot, [('2012', 'val')], None,
                           AnnotationTransform())
    image = testset.pull_image(img_id)
    # image = cv2.imread('demos/04.png')
    rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    # View the sampled input image before transform
    plt.figure(figsize=(10, 10))
    plt.imshow(rgb_image)

    x = cv2.resize(rgb_image, (512, 512)).astype(np.float32)
    x -= (104.0, 117.0, 123.0)
    x = x.astype(np.float32)
    x = x[:, :, ::-1].copy()
    x = torch.from_numpy(x).permute(2, 0, 1)

    xx = Variable(x.unsqueeze(0))  # wrap tensor in Variable
    if torch.cuda.is_available():
        xx = xx.cuda()
    y = net(xx)

    plt.figure(figsize=(10, 10))
    colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist()
    plt.imshow(rgb_image.astype(np.uint8))  # plot the image for matplotlib
    currentAxis = plt.gca()

    detections = y.data

    # scale each detection back up to the image
    scale = torch.Tensor(rgb_image.shape[1::-1]).repeat(2)
    for i in range(detections.size(1)):
        j = 0
        while detections[0, i, j, 0] >= 0.5:
            score = detections[0, i, j, 0]
            label_name = labels[i - 1]
            display_txt = '%s: %.2f' % (label_name, score)
            pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
            coords = (pt[0], pt[1]), pt[2] - pt[0] + 1, pt[3] - pt[1] + 1
            color = colors[i]
            currentAxis.add_patch(
                plt.Rectangle(*coords,
                              fill=False,
                              edgecolor=color,
                              linewidth=2))
            currentAxis.text(pt[0],
                             pt[1],
                             display_txt,
                             bbox={
                                 'facecolor': color,
                                 'alpha': 0.5
                             })
            j += 1
    plt.show()
Esempio n. 4
0
def demo_cv2(img_id=0):
    net = build_msc('test', 21)  # initialize SSD
    print(net)
    net.load_weights(
        '/media/sunwl/Datum/Projects/GraduationProject/Multi_Scale_CNN_512/weights/v2_voc.pth'
    )
    testset = VOCDetection(VOCroot, [('2012', 'val')], None,
                           AnnotationTransform)
    image = testset.pull_image(img_id)
    # image = cv2.imread('demos/047.jpg')
    rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    x = cv2.resize(rgb_image, (512, 512)).astype(np.float32)
    x -= (104.0, 117.0, 123.0)
    x = x.astype(np.float32)
    x = x[:, :, ::-1].copy()
    x = torch.from_numpy(x).permute(2, 0, 1)

    xx = Variable(x.unsqueeze(0))  # wrap tensor in Variable
    if torch.cuda.is_available():
        xx = xx.cuda()
    y = net(xx)
    colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist()
    detections = y.data

    # scale each detection back up to the image
    scale = torch.Tensor(rgb_image.shape[1::-1]).repeat(2)
    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2RGB)
    im2show = np.copy(bgr_image)
    for i in range(detections.size(1)):
        j = 0
        while detections[0, i, j, 0] >= 0.5:
            score = detections[0, i, j, 0]
            label_name = labels[i - 1]
            display_txt = '%s: %.2f' % (label_name, score)
            pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
            color = colors[i]
            color = [int(c * 255) for c in color[:3]]
            coords = pt[0], pt[1], pt[2], pt[3]
            cv2.rectangle(im2show,
                          coords[0:2],
                          coords[2:4],
                          color,
                          thickness=2)
            cv2.putText(im2show,
                        display_txt, (int(coords[0]), int(coords[1]) - 3),
                        cv2.FONT_HERSHEY_PLAIN,
                        1.0,
                        color,
                        thickness=1)
            j += 1
    cv2.imshow('original', bgr_image)
    cv2.imshow('demo', im2show)
    # cv2.imwrite(os.path.join('/media/sunwl/Datum/Projects/GraduationProject/Multi_Scale_CNN_512', "outputs",
    #                          "{:03d}.jpg".format(img_id)), im2show)
    cv2.waitKey(0)
Esempio n. 5
0
def draw_anchor(ImgPath, AnnoPath, save_path):
    # load data
    testset = VOCDetection(args.voc_root, [('2007', 'test')], None,
                           VOCAnnotationTransform())
    imagelist = os.listdir(ImgPath)
    cnt = 5
    #for image in imagelist:
    for i in range(cnt):
        image, annotation = testset.pull_anno(i)
        #image_pre, ext = os.path.splitext(image)
        imgfile = ImgPath + image + '.png'
        xmlfile = AnnoPath + 'test' + image + '.xml'
        #xmlfile = AnnoPath + image + '.xml'
        #xmlfile = AnnoPath +image + '.xml'
        # print(image)
        # 打开xml文档
        DOMTree = xml.dom.minidom.parse(xmlfile)
        # 得到文档元素对象
        collection = DOMTree.documentElement
        # 读取图片
        img = cv.imread(imgfile)

        filenamelist = collection.getElementsByTagName("filename")
        filename = filenamelist[0].childNodes[0].data
        print(filename)
        # 得到标签名为object的信息
        objectlist = collection.getElementsByTagName("object")

        for objects in objectlist:
            # 每个object中得到子标签名为name的信息
            namelist = objects.getElementsByTagName('name')
            name_idx = 0
            bndbox = objects.getElementsByTagName('bndbox')
            # print(bndbox)
            for box in bndbox:
                x1_list = box.getElementsByTagName('xmin')
                x1 = int(x1_list[0].childNodes[0].data)
                y1_list = box.getElementsByTagName('ymin')
                y1 = int(y1_list[0].childNodes[0].data)
                x2_list = box.getElementsByTagName('xmax')  #注意坐标,看是否需要转换
                x2 = int(x2_list[0].childNodes[0].data)
                y2_list = box.getElementsByTagName('ymax')
                y2 = int(y2_list[0].childNodes[0].data)
                cv.rectangle(img, (x1, y1), (x2, y2), (0, 165, 255),
                             thickness=2)
                # 通过此语句得到具体的某个name的值
                objectname = namelist[name_idx].childNodes[0].data
                cv.putText(img,
                           objectname, (x1, y1),
                           cv.FONT_HERSHEY_COMPLEX,
                           0.7, (0, 0, 255),
                           thickness=1)
                name_idx += 1
                #cv.imshow(filename, img)#这个要安装Xmanager才可以看
                cv.imwrite(save_path + '/' + filename, img)  #save picture
Esempio n. 6
0
def test_model(trained_model):
    # load net
    img_dim = (300, 512)[args.size == '512']
    num_classes = (21, 81)[args.dataset == 'COCO']
    net = build_net('test', img_dim, num_classes)  # initialize detector
    state_dict = torch.load(trained_model)
    # create new OrderedDict that does not contain `module.`

    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        head = k[:7]
        if head == 'module.':
            name = k[7:]  # remove `module.`
        else:
            name = k
        new_state_dict[name] = v
    net.load_state_dict(new_state_dict)
    net.eval()
    print('Finished loading model!')
    # print(net)
    # load data
    if args.dataset == 'VOC':
        testset = VOCDetection(VOCroot, [('2007', 'test')], None,
                               AnnotationTransform())
    elif args.dataset == 'VOC2012':
        testset = VOCDetection(VOCroot, [('2012', 'test')], None,
                               AnnotationTransform())
    elif args.dataset == 'COCO':
        testset = COCODetection(COCOroot, [('2014', 'minival')], None)
        # COCOroot, [('2015', 'test-dev')], None)
    else:
        print('Only VOC and COCO dataset are supported now!')
    if args.cuda:
        net = net.cuda()
        cudnn.benchmark = True
    else:
        net = net.cpu()

    # evaluation
    #top_k = (300, 200)[args.dataset == 'COCO']

    top_k = 200
    detector = Detect(num_classes, 0, cfg)
    save_folder = os.path.join(args.save_folder, args.dataset)
    rgb_means = ((104, 117, 123), (103.94, 116.78,
                                   123.68))[args.version == 'RFB_mobile']
    test_net(save_folder,
             net,
             detector,
             args.cuda,
             testset,
             BaseTransform(net.size, rgb_means, (2, 0, 1)),
             top_k,
             thresh=0.01)
Esempio n. 7
0
def create_dataset(opts, phase=None):
    means = (104, 117, 123)
    name = opts.dataset
    home = os.path.expanduser("~")
    DataAug = SSDAugmentation if opts.phase == 'train' else BaseTransform

    if name == 'voc':
        print('Loading Dataset...')
        sets = [('2007', 'trainval'), ('2012', 'trainval')] if opts.phase == 'train' else [('2007', 'test')]
        data_root = os.path.join(home, "data/VOCdevkit/")
        from data import VOCDetection
        dataset = VOCDetection(data_root, sets,
                               DataAug(opts.ssd_dim, means),
                               AnnotationTransform())
    elif name == 'coco':
        data_root = os.path.join(home, 'dataset/coco')

        from data import COCODetection
        dataset = COCODetection(root=data_root, phase=opts.phase,
                                transform=DataAug(opts.ssd_dim, means))
        # dataset = dset.CocoDetection(root=(data_root + '/train2014'),
        #                              annFile=(data_root + '/annotations/' + anno_file),
        #                              transform=transforms.ToTensor())
    else:
        raise NameError('Unknown dataset')

    show_phase = opts.phase if phase is None else phase
    print('{:s} on {:s}'.format(show_phase.upper(), dataset.name))

    return dataset
Esempio n. 8
0
def test():
    # get device
    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # load net
    num_classes = len(VOC_CLASSES)
    testset = VOCDetection(args.voc_root, [('2007', 'test')], None,
                           VOCAnnotationTransform())

    cfg = config.voc_cfg
    if args.version == 'centernet':
        from models.centernet import CenterNet
        net = CenterNet(device,
                        input_size=cfg['min_dim'],
                        num_classes=num_classes)

    net.load_state_dict(torch.load(args.trained_model, map_location=device))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net,
             device,
             testset,
             BaseTransform(net.input_size,
                           mean=(0.406, 0.456, 0.485),
                           std=(0.225, 0.224, 0.229)),
             thresh=args.visual_threshold)
def test():
    # get device
    device = get_device(0)

    # load net
    num_classes = len(VOC_CLASSES)
    testset = VOCDetection(args.voc_root, [('2007', 'test')], None, VOCAnnotationTransform())
    mean = config.MEANS

    cfg = config.voc_ab
    if args.version == 'yolo_v2':
        net = myYOLOv2(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.ANCHOR_SIZE)
        print('Let us test yolo-v2 on the VOC0712 dataset ......')
    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        net = myYOLOv3(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.MULTI_ANCHOR_SIZE)


    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net, device, testset,
             BaseTransform(net.input_size, mean),
             thresh=args.visual_threshold)
Esempio n. 10
0
def main(trained_model):
    # load net
    num_classes = len(labelmap) + 1  # +1 for background
    net = build_ssd('test', 300, num_classes)
    # print(net)
    net = net.cuda()  # initialize SSD
    net.load_state_dict(torch.load(trained_model))
    # resume_ckpt(trained_model,net)
    net.eval()
    print('Finished loading model!')
    # load data
    dataset = VOCDetection(args.voc_root, [('2007', set_type)],
                           BaseTransform(300, dataset_mean),
                           VOCAnnotationTransform())
    dataset = COCO

    if args.cuda:
        net = net.cuda()
        cudnn.benchmark = True
    # evaluation
    test_net(args.save_folder,
             net,
             args.cuda,
             dataset,
             BaseTransform(net.size, dataset_mean),
             args.top_k,
             300,
             thresh=args.confidence_threshold)
Esempio n. 11
0
def read_gt(voc_dir):
	set_type = 'test'
	dataset_mean = (104, 117, 123)
	dataset = VOCDetection(voc_dir, [('2007', set_type)],
						   BaseTransform(300, dataset_mean),
						   VOCAnnotationTransform())

	num_images = len(dataset)
	gt_bbox = [[[] for _ in range(num_images)]
					for _ in range(len(labelmap)+1)]
	for i in range(len(dataset)):
		im_name, gt = dataset.pull_anno(i)
		for box_conf in gt:
			gt_bbox[box_conf[4]+1][i].append(box_conf[:4])

	return gt_bbox, num_images
Esempio n. 12
0
def test():
    # get device
    device = get_device(0)

    # load net
    num_classes = len(VOC_CLASSES)
    testset = VOCDetection(args.voc_root, [('2007', 'test')], None,
                           VOCAnnotationTransform())
    mean = config.MEANS

    cfg = config.voc_ab
    if args.version == 'fcos_lite':
        from models.fcos_lite import FCOS_LITE

        net = FCOS_LITE(device,
                        input_size=cfg['min_dim'],
                        num_classes=num_classes,
                        trainable=False)
        print('Let us test FCOS-LITE on the VOC0712 dataset ......')

    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net,
             device,
             testset,
             BaseTransform(net.input_size, mean),
             thresh=args.visual_threshold)
Esempio n. 13
0
def train(net):
    net.train()
    priorbox = PriorBox()
    with torch.no_grad():
        priors = priorbox.forward()
        priors = priors.to(device)

    dataloader = DataLoader(VOCDetection(),
                            batch_size=2,
                            collate_fn=detection_collate,
                            num_workers=12)

    for epoch in range(1000):
        loss_ls, loss_cs = [], []
        load_t0 = time.time()
        if epoch > 500:
            adjust_learning_rate(optimizer, 1e-4)

        for images, targets in dataloader:
            images = images.to(device)
            targets = [anno.to(device) for anno in targets]
            out = net(images)
            optimizer.zero_grad()
            loss_l, loss_c = criterion(out, priors, targets)

            loss = 2 * loss_l + loss_c
            loss.backward()
            optimizer.step()
            loss_cs.append(loss_c.item())
            loss_ls.append(loss_l.item())
        load_t1 = time.time()

        print(f'{np.mean(loss_cs)}, {np.mean(loss_ls)} time:{load_t1-load_t0}')
        torch.save(net.state_dict(), 'Final_FaceBoxes.pth')
Esempio n. 14
0
def DatasetSync(dataset='VOC', split='training'):
    if dataset == 'VOC':
        train_sets = [('2007', 'trainval'), ('2012', 'trainval')]
        # DataRoot=os.path.join(args.data_root,'VOCdevkit')
        DataRoot = args.data_root
        dataset = VOCDetection(DataRoot, train_sets,
                               SSDAugmentation(args.dim, means),
                               AnnotationTransform())
    elif dataset == 'kitti':
        DataRoot = os.path.join(args.data_root, 'kitti')
        dataset = KittiLoader(DataRoot,
                              split=split,
                              img_size=(1000, 300),
                              transforms=SSDAugmentation((1000, 300), means),
                              target_transform=AnnotationTransform_kitti())
    elif dataset == 'COCO':
        image_set = ['train2014', 'valminusminival2014']
        image_set = 'trainval35k'
        DataRoot = COCO_ROOT
        dataset = COCODetection(root=DataRoot,
                                transform=SSDAugmentation(args.dim, means))
    elif dataset == 'tme':
        train_sets = [('train_mix_cut_bot')]
        DataRoot = '/home/kiminhan/datasets/'
        dataset = TMEDetection(DataRoot, train_sets,
                               SSDAugmentation(args.dim, means),
                               AnnotationTransform())

    return dataset
Esempio n. 15
0
def test():
    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # load net
    input_size = [args.input_size, args.input_size]
    num_classes = 20
    testset = VOCDetection(VOC_ROOT, img_size=None, image_sets=[('2007', 'test')], transform=None)

    # build model
    if args.version == 'yolo':
        from models.yolo import myYOLO
        net = myYOLO(device, input_size=input_size, num_classes=num_classes, trainable=False)
        print('Let us test yolo on the VOC0712 dataset ......')

    else:
        print('Unknown Version !!!')
        exit()


    net.load_state_dict(torch.load(args.trained_model, map_location=device))
    net.eval()
    print('Finished loading model!')

    net = net.to(device)

    # evaluation
    test_net(net, device, testset,
             BaseTransform(net.input_size),
             thresh=args.visual_threshold)
Esempio n. 16
0
def evaluate(model,
             save_folder,
             cuda,
             top_k,
             im_size=320,
             thresh=0.001,
             dataset_mean=((104, 117, 123))):

    model.phase = 'test'
    model.eval()

    dataset = VOCDetection(args.voc_root,
                           BaseTransform(im_size, dataset_mean),
                           VOCAnnotationTransform(),
                           phase='valid')

    map = eval_net(save_folder,
                   model,
                   cuda,
                   dataset,
                   BaseTransform(im_size, dataset_mean),
                   top_k,
                   im_size,
                   thresh=thresh)
    return map
Esempio n. 17
0
def test():
    # get device
    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # load net
    num_classes = len(VOC_CLASSES)
    testset = VOCDetection(args.voc_root, [('2007', 'test')], None,
                           VOCAnnotationTransform())

    cfg = config.voc_ab
    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        net = myYOLOv2(device,
                       input_size=cfg['min_dim'],
                       num_classes=num_classes,
                       anchor_size=config.ANCHOR_SIZE)
        print('Let us test yolo-v2 on the VOC0712 dataset ......')

    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        net = myYOLOv3(device,
                       input_size=cfg['min_dim'],
                       num_classes=num_classes,
                       anchor_size=config.MULTI_ANCHOR_SIZE)

    elif args.version == 'slim_yolo_v2':
        from models.slim_yolo_v2 import SlimYOLOv2
        net = SlimYOLOv2(device,
                         input_size=cfg['min_dim'],
                         num_classes=num_classes,
                         anchor_size=config.ANCHOR_SIZE)
        print('Let us test slim-yolo-v2 on the VOC0712 dataset ......')

    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny

        net = YOLOv3tiny(device,
                         input_size=cfg['min_dim'],
                         num_classes=num_classes,
                         anchor_size=config.TINY_MULTI_ANCHOR_SIZE)
        print('Let us test tiny-yolo-v3 on the VOC0712 dataset ......')

    net.load_state_dict(torch.load(args.trained_model, map_location=device))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net,
             device,
             testset,
             BaseTransform(net.input_size,
                           mean=(0.406, 0.456, 0.485),
                           std=(0.225, 0.224, 0.229)),
             thresh=args.visual_threshold)
Esempio n. 18
0
def test():
    # get device
    if args.cuda:
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # load net
    num_classes = 80
    if args.dataset == 'COCO_val':
        cfg = config.coco_af
        input_size = cfg['min_dim']
        testset = COCODataset(data_dir=args.dataset_root,
                              json_file='instances_val2017.json',
                              name='val2017',
                              img_size=cfg['min_dim'][0],
                              debug=args.debug)

    elif args.dataset == 'COCO_test-dev':
        cfg = config.coco_af
        input_size = cfg['min_dim']
        testset = COCODataset(data_dir=args.dataset_root,
                              json_file='image_info_test-dev2017.json',
                              name='test2017',
                              img_size=cfg['min_dim'][0],
                              debug=args.debug)

    elif args.dataset == 'VOC':
        cfg = config.voc_af
        input_size = cfg['min_dim']
        testset = VOCDetection(VOC_ROOT, [('2007', 'test')], None,
                               VOCAnnotationTransform())

    # build model
    if args.version == 'yolo':
        from models.yolo import myYOLO
        net = myYOLO(device,
                     input_size=input_size,
                     num_classes=num_classes,
                     trainable=False)
        print('Let us test YOLO on the %s dataset ......' % (args.dataset))

    else:
        print('Unknown Version !!!')
        exit()

    net.load_state_dict(torch.load(args.trained_model, map_location=device))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net,
             device,
             testset,
             BaseTransform(net.input_size,
                           mean=(0.406, 0.456, 0.485),
                           std=(0.225, 0.224, 0.229)),
             thresh=args.visual_threshold)
Esempio n. 19
0
def train():
    net.train()
    epoch = 0 + args.resume_epoch
    print('Loading Dataset...')

    dataset = VOCDetection(args.training_dataset, preproc_s3fd(img_dim, rgb_means, cfg['max_expand_ratio']), AnnotationTransform())

    epoch_size = math.ceil(len(dataset) / args.batch_size)
    max_iter = args.max_epoch * epoch_size

    stepvalues = (200 * epoch_size, 250 * epoch_size)
    step_index = 0

    if args.resume_epoch > 0:
        start_iter = args.resume_epoch * epoch_size
    else:
        start_iter = 0

    for iteration in range(start_iter, max_iter):
        if iteration % epoch_size == 0:
            # create batch iterator
            batch_iterator = iter(data.DataLoader(dataset, batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=detection_collate, pin_memory=True))
            if (epoch % 10 == 0 and epoch > 0) or (epoch % 5 == 0 and epoch > 200):
                torch.save(net.state_dict(), args.save_folder + 'S3FD_{}_epoch_'.format(args.net) + repr(epoch) + '.pth')
            epoch += 1

        load_t0 = time.time()
        if iteration in stepvalues:
            step_index += 1
        lr = adjust_learning_rate(optimizer, args.gamma, epoch, step_index, iteration, epoch_size)

        # load train data
        images, targets = next(batch_iterator)
        if args.cuda:
            images = Variable(images.cuda())
            targets = [Variable(anno.cuda()) for anno in targets]
        else:
            images = Variable(images)
            targets = [Variable(anno) for anno in targets]

        # forward
        out = net(images)
        
        # backprop
        optimizer.zero_grad()
        loss_l, loss_c = criterion(out, priors, targets)
        loss = loss_l + cfg['conf_weight'] * loss_c
        loss.backward()
        optimizer.step()
        load_t1 = time.time()
        print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size) +
              '|| Totel iter ' + repr(iteration) + ' || L: %.4f C: %.4f||' % (loss_l.item(), cfg['conf_weight'] * loss_c.item()) +
              'Batch time: %.4f sec. ||' % (load_t1 - load_t0) + 'LR: %.8f' % (lr))
        if writer is not None:
            writer.add_scalar('train/loss_l', loss_l.item(), iteration)
            writer.add_scalar('train/loss_c', cfg['conf_weight'] * loss_c.item(), iteration)
            writer.add_scalar('train/lr', lr, iteration)

    torch.save(net.state_dict(), args.save_folder + 'Final_{}_S3FD.pth'.format(args.net))
Esempio n. 20
0
def DatasetSync(dataset='VOC', split='training'):
    if dataset == 'VOC':
        DataRoot = args.data_root
        dataset = VOCDetection(DataRoot,
                               train_sets,
                               transform=SSDAugmentation(args.dim, means),
                               target_transform=AnnotationTransform_caltech(),
                               target_vis_transform=AnnotationTransform_vis())
    return dataset
Esempio n. 21
0
def train():
    net.train()
    epoch = 0 + args.resume_epoch
    print('Loading Dataset...')

    dataset = VOCDetection(training_dataset, preproc(img_dim, rgb_mean), AnnotationTransform())
    # dataset = AFLW(training_dataset, npy_file, preproc_(img_dim, rgb_mean))
    epoch_size = math.ceil(len(dataset) / batch_size)
    max_iter = max_epoch * epoch_size

    stepvalues = (200 * epoch_size, 250 * epoch_size)
    step_index = 0

    if args.resume_epoch > 0:
        start_iter = args.resume_epoch * epoch_size
    else:
        start_iter = 0

    for iteration in range(start_iter, max_iter):
        if iteration % epoch_size == 0:
            # create batch iterator
            batch_iterator = iter(data.DataLoader(dataset, batch_size, shuffle=True, num_workers=num_workers, collate_fn=detection_collate))
            if (epoch % 10 == 0 and epoch > 0) or (epoch % 5 == 0 and epoch > 200):
                torch.save(net.state_dict(), save_folder + '{}_'.format(args.save_name) + str(epoch) + '.pth')
            epoch += 1

        load_t0 = time.time()
        if iteration in stepvalues:
            step_index += 1
        lr = adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size)

        # load train data
        images, targets = next(batch_iterator)
        # print("trainning batch:", len(images), len(targets), targets[0].shape)
        images = images.to(device)
        targets = [anno.to(device) for anno in targets]
        

        # forward
        out = net(images)

        # backprop
        optimizer.zero_grad()
        loss_l, loss_c = criterion(out, priors, targets)
        loss = cfg['loc_weight'] * loss_l + loss_c
        # loss_l, loss_c, loss_f = criterion(out, priors, targets)
        # loss = cfg['loc_weight'] * loss_l + loss_c + cfg['loc_five_weight'] * loss_f
        loss.backward()
        optimizer.step()
        load_t1 = time.time()
        batch_time = load_t1 - load_t0
        eta = int(batch_time * (max_iter - iteration))
        
        print('Epoch:{}/{} || Epochiter: {}/{} || Iter: {}/{} || L: {:.4f} C: {:.4f} || F:{:.4f} || LR: {:.4f} || Batchtime: {:.4f} s || ETA: {}'.format(epoch, max_epoch, (iteration % epoch_size) + 1, epoch_size, iteration + 1, max_iter, loss_l.item(), loss_c.item(), loss_f.item(), lr, batch_time, str(datetime.timedelta(seconds=eta))))
        
    torch.save(net.state_dict(), save_folder + 'Final_{}_'.format(args.save_name))
Esempio n. 22
0
def train():
    net.train()
    epoch = 0 + args.resume_epoch
    print('Loading Dataset...')

    dataset = VOCDetection(args.training_dataset, preproc(img_dim, rgb_means), AnnotationTransform())

    epoch_size = math.ceil(len(dataset) / args.batch_size)
    max_iter = args.max_epoch * epoch_size

    stepvalues = (200 * epoch_size, 250 * epoch_size)
    step_index = 0

    if args.resume_epoch > 0:
        start_iter = args.resume_epoch * epoch_size
    else:
        start_iter = 0

    for iteration in range(start_iter, max_iter):
        if iteration % epoch_size == 0:
            # create batch iterator
            batch_iterator = iter(data.DataLoader(dataset, batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=detection_collate))
            if (epoch % 1 == 0 and epoch > 0) or (epoch % 1 == 0 and epoch > 200):
                torch.save(net.state_dict(), args.save_folder + 'Face_epoch_' + repr(epoch) + '.pth')
            epoch += 1

        load_t0 = time.time()
        if iteration in stepvalues:
            step_index += 1
        lr = adjust_learning_rate(optimizer, args.gamma, epoch, step_index, iteration, epoch_size)

        # load train data
        images, targets = next(batch_iterator)
        images = images.to(device)
        targets = [anno.to(device) for anno in targets]

        # forward
        out = net(images)
        
        # backprop
        optimizer.zero_grad()
        loss_l, loss_c = criterion(out, priors, targets)
        #loss = cfg['loc_weight'] * loss_l + loss_c
        loss = loss_l + loss_c        
        loss.backward()
        optimizer.step()
        load_t1 = time.time()
        #print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size) +
        #      '|| Totel iter ' + repr(iteration) + ' || L: %.4f C: %.4f||' % (cfg['loc_weight']*loss_l.item(), loss_c.item()) +
        #      'Batch time: %.4f sec. ||' % (load_t1 - load_t0) + 'LR: %.8f' % (lr))

        print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size) +
              '|| Totel iter ' + repr(iteration) + ' || L: %.4f C: %.4f||' % (loss_l.item(), loss_c.item()) +
              'Batch time: %.4f sec. ||' % (load_t1 - load_t0) + 'LR: %.8f' % (lr))

    torch.save(net.state_dict(), args.save_folder + 'Final.pth')
Esempio n. 23
0
def test_voc():
    # load net
    num_classes = len(CUSTOM_CLASSES if args.use_custom else VOC_CLASSES
                      ) + 1  # +1 background
    net = build_ssd('test', 300, num_classes)  # initialize SSD

    if args.cuda:
        net.load_state_dict(
            torch.load(args.trained_model, map_location=torch.device('cuda')))
    else:
        net.load_state_dict(
            torch.load(args.trained_model, map_location=torch.device('cpu')))

    net.eval()
    print('Finished loading model!')

    # load data
    if args.use_custom:
        custom_class_to_ind = dict(
            zip(CUSTOM_CLASSES, range(len(CUSTOM_CLASSES))))
        testset = VOCDetection(root=args.voc_root,
                               image_sets=[('2019', 'test')],
                               dataset_name='VOC2019',
                               transform=BaseTransform(300, MEANS),
                               target_transform=VOCAnnotationTransform(
                                   class_to_ind=custom_class_to_ind))
    else:
        testset = VOCDetection(root=args.voc_root,
                               image_sets=[('2007', 'test')],
                               dataset_name='VOC0712',
                               transform=BaseTransform(300, MEANS),
                               target_transform=VOCAnnotationTransform())

    if args.cuda:
        net = net.cuda()
        cudnn.benchmark = True

    # evaluation
    test_random_img(net,
                    args.cuda,
                    testset,
                    BaseTransform(300, MEANS),
                    thresh=args.visual_threshold)
Esempio n. 24
0
def main(args):
    if args.gpus is not None:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
        print('Using {} GPUs'.format(args.gpus))

    train_transform = Compose(
        [Resize(args.input_size),
         ToTensor(),
         Norm(mean=(123, 117, 104))])
    trainset = VOCDetection(args.data_root,
                            args.train_set,
                            transform=train_transform,
                            do_norm=True)
    train_loader = torch.utils.data.DataLoader(trainset,
                                               shuffle=True,
                                               batch_size=args.batch_size,
                                               num_workers=args.workers,
                                               collate_fn=detection_collate)

    model = build_ssd(cfg)
    if not args.checkpoint and args.pretrain:
        print('load pretrain model: {}'.format(args.pretrain))
        model.load_weight(args.pretrain)
    if args.gpus:
        model = torch.nn.DataParallel(model).cuda()
    criterion = multibox_loss.MultiboxLoss(args.num_classes,
                                           args.neg_pos_ratio)
    optimizer = optim.SGD(model.parameters(),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    args.start_epoch = 0

    if args.checkpoint:
        print('=> loading checkpoint from {}...'.format(args.checkpoint))
        state = torch.load(args.checkpoint)
        args.start_epoch = state['epoch']
        model.load_state_dict(state['model'])
        optimizer.load_state_dict(state['optimizer'])

    for epoch in range(args.start_epoch, args.epochs):
        train(train_loader, model, criterion, optimizer, epoch, args)

        state = {
            'epoch': epoch + 1,
            'model': model.state_dict(),
            'optimizer': optimizer.state_dict()
        }
        # save checkpoint
        os.makedirs(args.checkpoint_dir, exist_ok=True)
        checkpoint_file = os.path.join(
            args.checkpoint_dir,
            'checkpoint_epoch_{:04d}.pth.tar'.format(state['epoch']))
        torch.save(state, checkpoint_file)
Esempio n. 25
0
def load_dataset():
    if args.dataset == 'VOC':
        from data import VOCroot, VOCDetection, VOC_CLASSES
        show_classes = VOC_CLASSES
        num_classes = len(VOC_CLASSES)
        train_sets = [('2007', 'trainval'), ('2012', 'trainval')]
        dataset = VOCDetection(VOCroot, train_sets, preproc(args.size), AnnotationTransform(), dataset_name='VOC0712trainval')
        epoch_size = len(dataset) // args.batch_size
        max_iter = 250 * epoch_size
        testset = VOCDetection(VOCroot, [('2007', 'test')], None)
    elif args.dataset == 'COCO':
        from data import COCOroot, COCODetection, COCO_CLASSES
        show_classes = COCO_CLASSES
        num_classes = len(COCO_CLASSES)
        train_sets = [('2017', 'train')]
        dataset = COCODetection(COCOroot, train_sets, preproc(args.size))
        epoch_size = len(dataset) // args.batch_size
        max_iter = 140 * epoch_size
        testset = COCODetection(COCOroot, [('2017', 'val')], None)
    else:
        raise NotImplementedError('Unkown dataset {}!'.format(args.dataset))
    return (show_classes, num_classes, dataset, epoch_size, max_iter, testset)
Esempio n. 26
0
def test_voc():
    # load net
    num_classes = len(VOC_CLASSES) + 1
    net = build_ssd('test', 300, num_classes)
    net.load_state_dict(torch.load(args.trained_model))
    net.eval()
    print('Finished loading model!')
    # load data
    testset = VOCDetection(args.voc_root, [('2007', 'test')], None, VOCAnnotationTransform())
    if args.cuda:
        net = net.cuda()
        cudnn.benchmark = True
    # evaluation
    test_net(args.save_folder, net, args.cuda, testset, BaseTransform(net.size, (104, 117, 123)), thresh=args.visual_threshold)
Esempio n. 27
0
def test():
    # get device
    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # load net
    num_classes = 80
    if args.dataset == 'COCO':
        cfg = config.coco_ab
        testset = COCODataset(
                    data_dir=args.dataset_root,
                    json_file='instances_val2017.json',
                    name='val2017',
                    img_size=cfg['min_dim'][0],
                    debug=args.debug)
    elif args.dataset == 'VOC':
        cfg = config.voc_ab
        testset = VOCDetection(VOC_ROOT, [('2007', 'test')], None, VOCAnnotationTransform())


    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        net = myYOLOv2(device, input_size=cfg['min_dim'], num_classes=num_classes, anchor_size=config.ANCHOR_SIZE_COCO)
        print('Let us test yolo-v2 on the MSCOCO dataset ......')
    
    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        net = myYOLOv3(device, input_size=cfg['min_dim'], num_classes=num_classes, anchor_size=config.MULTI_ANCHOR_SIZE_COCO)

    elif args.version == 'slim_yolo_v2':
        from models.slim_yolo_v2 import SlimYOLOv2    
        net = SlimYOLOv2(device, input_size=cfg['min_dim'], num_classes=num_classes, anchor_size=config.ANCHOR_SIZE_COCO)
   
    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny
    
        net = YOLOv3tiny(device, input_size=cfg['min_dim'], num_classes=num_classes, anchor_size=config.TINY_MULTI_ANCHOR_SIZE_COCO)

    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net, device, testset,
             BaseTransform(net.input_size, mean=(0.406, 0.456, 0.485), std=(0.225, 0.224, 0.229)),
             thresh=args.visual_threshold)
Esempio n. 28
0
def DatasetSync(dataset='voc', split='training'):

    if dataset == 'voc':
        DataRoot = os.path.join(args.data_root, 'VOCdevkit')
        dataset = VOCDetection(DataRoot, train_sets,
                               SSDAugmentation(args.dim, means),
                               AnnotationTransform())
    elif dataset == 'kitti':
        DataRoot = os.path.join(args.data_root, 'kitti')
        dataset = KittiLoader(DataRoot,
                              split=split,
                              img_size=(1000, 300),
                              transforms=SSDAugmentation((1000, 300), means),
                              target_transform=AnnotationTransform_kitti())
    return dataset
Esempio n. 29
0
def test():
    # get device
    device = get_device(0)

    # load net
    num_classes = 80
    anchor_size = config.ANCHOR_SIZE_COCO
    if args.dataset == 'COCO':
        cfg = config.coco_ab
        testset = COCODataset(
                    data_dir=args.dataset_root,
                    json_file='instances_val2017.json',
                    name='val2017',
                    img_size=cfg['min_dim'][0],
                    debug=args.debug)
        mean = config.MEANS
    elif args.dataset == 'VOC':
        cfg = config.voc_ab
        testset = VOCDetection(VOC_ROOT, [('2007', 'test')], None, VOCAnnotationTransform())
        mean = config.MEANS


    if args.version == 'yolo_v2':
        from models.yolo_v2 import myYOLOv2
        net = myYOLOv2(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=anchor_size)
        print('Let us test yolo-v2 on the MSCOCO dataset ......')
    
    elif args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        net = myYOLOv3(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=anchor_size)

    elif args.version == 'tiny_yolo_v2':
        from models.tiny_yolo_v2 import YOLOv2tiny    
        net = YOLOv2tiny(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.ANCHOR_SIZE)
   
    elif args.version == 'tiny_yolo_v3':
        from models.tiny_yolo_v3 import YOLOv3tiny
    
        net = YOLOv3tiny(device, input_size=cfg['min_dim'], num_classes=num_classes, trainable=False, anchor_size=config.MULTI_ANCHOR_SIZE)

    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net, device, testset,
             BaseTransform(net.input_size, mean),
             thresh=args.visual_threshold)
Esempio n. 30
0
def test_voc():
    num_classes = len(VOC_CLASSES) + 1
    net = build_ssd('test', 300, num_classes)
    net.eval()
    print('Finished loading model!')

    testset = VOCDetection(opt.DATASETS.ROOT, ['test'],
                           BaseTransform(300, opt.DATASETS.MEANS),
                           VOCAnnotationTransform())
    if opt.DEVICE:
        net = net.cuda()
        cudnn.benchmark = True
    # evaluation
    test_net(args.save_folder, net, args.cuda, testset,
             BaseTransform(net.size, (104, 117, 123)),
             thresh=args.visual_threshold)