# initialize data and label paths
print("[INFO] loading images........")

train_frame_path = os.path.sep.join([args["dataset"], "train_frames/train"])
train_mask_path = os.path.sep.join([args["dataset"], "train_masks/train"])

val_frame_path = os.path.sep.join([args["dataset"], "val_frames/val"])
val_mask_path = os.path.sep.join([args["dataset"], "val_masks/val"])

input_size = [640, 640]
# instantiate datagenerator class
train_set = Dataloader(image_paths=train_frame_path,
                       mask_paths=train_mask_path,
                       image_size=input_size,
                       numclasses=num_of_Classes,
                       channels=[3, 3],
                       palette=palette,
                       seed=47)

val_set = Dataloader(image_paths=val_frame_path,
                     mask_paths=val_mask_path,
                     image_size=input_size,
                     numclasses=num_of_Classes,
                     channels=[3, 3],
                     palette=palette,
                     seed=47)

# build model
model = UNET.build((640, 640, 3),
                   num_of_Classes,
Esempio n. 2
0
    test_frame_path = os.path.sep.join([dataset_path, "test_frames/test"])
    test_mask_path = os.path.sep.join([dataset_path, "test_masks/test"])

    # initialise variables
    No_of_train_images = len(os.listdir(dataset_path + '/train_frames/train'))
    No_of_val_images = len(os.listdir(dataset_path + '/val_frames/val'))
    print("Number of Training Images = {}".format(No_of_train_images))
    print("Number of Validation Images = {}".format(No_of_val_images))

    input_size = [256, 256]
    # instantiate datagenerator class
    train_set = Dataloader(image_paths=train_frame_path,
                           mask_paths=train_mask_path,
                           image_size=input_size,
                           numclasses=num_of_Classes,
                           channels=[3, 3],
                           palette=palette,
                           seed=47)

    val_set = Dataloader(image_paths=val_frame_path,
                         mask_paths=val_mask_path,
                         image_size=input_size,
                         numclasses=num_of_Classes,
                         channels=[3, 3],
                         palette=palette,
                         seed=47)

    test_set = Dataloader(image_paths=test_frame_path,
                          mask_paths=test_mask_path,
                          image_size=input_size,
Esempio n. 3
0
"""
Created on Thu Oct 24 19:25:42 2019

@author: User
"""

import xgboost as xgb
from sklearn.model_selection import RandomizedSearchCV,GridSearchCV,ShuffleSplit
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from dataLoader import Dataloader

import matplotlib.pyplot as plt
import seaborn as sns

#Load Data
dl = Dataloader(normalization=True, select_features=["speed_max", "speed_mean", "speed_median", "speed_std"])

X_train, y_train = dl.getTrain()

X_test, y_test = dl.getTest()

X_validate, y_validate = dl.getValidate()

print(X_train.shape)
print(y_train.shape)

classes = {
            "walk":0,
            "bike":1,
            "bus":2,
            "taxi/car": 3,
Esempio n. 4
0
    test_maskpath = os.path.sep.join([test_datapath, "test_masks/test"])
    test_vector_path = os.path.sep.join([test_datapath, "test_vectors/test"])

    # input size
    input_size = [352, 352]

    # import colour palette
    df = pd.read_csv('classes.csv', ",", header=None)
    palette = np.array(df.values, dtype=np.float)
    num_of_Classes = palette.shape[0]

    # instantiate datagenerator class
    test_set = Dataloader(image_paths=test_imagepath,
                          mask_paths=test_maskpath,
                          vector_paths=test_vector_path,
                          image_size=input_size,
                          numclasses=num_of_Classes,
                          channels=[3, 3],
                          palette=palette,
                          seed=47)

    # evaluation parameters
    BS = 1

    # initialize data generators with threading lock
    testgen = threadsafe_iter(
        test_set.data_gen(should_augment=False, batch_size=BS))

    No_of_test_images = len(os.listdir(test_imagepath))
    print("Number of Test Images = {}".format(No_of_test_images))

    eval = evaluation(input_size,
Esempio n. 5
0
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix
import warnings

warnings.filterwarnings('ignore')
from dataLoader import Dataloader
from sklearn.tree import export_graphviz
from sklearn.externals.six import StringIO
from IPython.display import Image
import pydotplus
import os

os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'

#Load Data
dl = Dataloader()

X = dl.getX()
X_train, y_train = dl.getTrain()
X_test, y_test = dl.getTest()

print(X_train.shape)
print(y_train.shape)

n_features = 33  #to edit if there's any features that are dropped

classes = dl.getClasses()
inv_map = {v: k for k, v in classes.items()}

print(classes)
Esempio n. 6
0
    plt.figure()
    plt.imshow(img)
    plt.axis('off')

plt.style.use('ggplot')     # if want to use the default style, set 'classic'
plt.rcParams['ytick.right']     = True
plt.rcParams['ytick.labelright']= True
plt.rcParams['ytick.left']      = False
plt.rcParams['ytick.labelleft'] = False
plt.rcParams['font.family']     = 'Arial'
modelname = 'pre-1'
seed = 7
np.random.seed(seed)

# .............................................................................
dl = Dataloader(normalization=True, noise_removal=True)
x_train, y_train = dl.getTrain()
x_val, y_val = dl.getValidate()

#enc = OneHotEncoder(categories=[classes],handle_unknown='ignore',drop=[0])
y_train = to_categorical(y_train)
y_val = to_categorical(y_val)

x_train = np.expand_dims(x_train,axis=2)
x_val = np.expand_dims(x_val,axis=2)

dat = tf.convert_to_tensor(x_train)
lbl = tf.convert_to_tensor(y_train)
ds = tf.data.Dataset.from_tensor_slices((dat, lbl))
dataset = ds.shuffle(1000).batch(1).repeat()
Esempio n. 7
0
    set_seed(config['seed'])

    if 'multiwoz' in data_dir:
        print('-'*20 + 'dataset:multiwoz' + '-'*20)
        from convlab2.nlu.jointBERT.multiwoz.postprocess import is_slot_da, calculateF1, recover_intent
    elif 'camrest' in data_dir:
        print('-' * 20 + 'dataset:camrest' + '-' * 20)
        from convlab2.nlu.jointBERT.camrest.postprocess import is_slot_da, calculateF1, recover_intent
    elif 'crosswoz' in data_dir:
        print('-' * 20 + 'dataset:crosswoz' + '-' * 20)
        from convlab2.nlu.jointBERT.crosswoz.postprocess import is_slot_da, calculateF1, recover_intent

    intent_vocab = json.load(open(os.path.join(data_dir, 'intent_vocab.json')))
    tag_vocab = json.load(open(os.path.join(data_dir, 'tag_vocab.json')))
    dataloader = Dataloader(intent_vocab=intent_vocab, tag_vocab=tag_vocab,
                            pretrained_weights=config['model']['pretrained_weights'])
    print('intent num:', len(intent_vocab))
    print('tag num:', len(tag_vocab))
    for data_key in ['train', 'val', 'test']:
        dataloader.load_data(json.load(open(os.path.join(data_dir, '{}_data.json'.format(data_key)))), data_key,
                             cut_sen_len=config['cut_sen_len'], use_bert_tokenizer=config['use_bert_tokenizer'])
        print('{} set size: {}'.format(data_key, len(dataloader.data[data_key])))

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    if not os.path.exists(log_dir):
        os.makedirs(log_dir)

    writer = SummaryWriter(log_dir)

    model = JointBERT(config['model'], DEVICE, dataloader.tag_dim, dataloader.intent_dim, dataloader.intent_weight)
Esempio n. 8
0
from dataLoader import Dataloader
from vincenty import vincenty

points, labels, traj = Dataloader(load_portion=0.02).getDataFrames()
print(points)
print(labels)
print(traj)

data, lbl = Dataloader().getTrain()
data, lbl = Dataloader().getTest()
data, lbl = Dataloader().getValidate()
Esempio n. 9
0
from dataLoader import Dataloader
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
from tensorflow.python.keras.utils import to_categorical

x_train, y_train = Dataloader().getTrain()
x_test, y_test = Dataloader().getTest()

y_train = to_categorical(y_train)
x_train.pop("start_time")
x_train.pop("end_time")
x_test.pop("start_time")
x_test.pop("end_time")

print(x_train.shape)
print(y_train.shape)

clf = RandomForestClassifier(n_estimators=1000, random_state=0, n_jobs=-1)

# Apply The Full Featured Classifier To The Test Data
clf.fit(x_train, y_train)

sel = SelectFromModel(clf)
sel.fit(x_train, y_train)
selected_feat = x_train.columns[(sel.get_support())]
len(selected_feat)

print(selected_feat)


def getSelectedFeature():